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Group homology

G = (discrete) group.

Fact: there is a contractible space EG on which G acts freely, and we
denote BG = EG/G.

Note: m,(BG) = G, universal cover of BG is contractible.

Fact: BG is well-defined up to homotopy equivalence, it classifies
principal G-bundles.

Definition: the group homology of G, H..(G), is defined to be the
homology of the space BG.

Example: G = Z then can take EG = R so BG = S" so H.(Z) is Z in
degrees 0, 1and vanishes otherwise.

Facts:

H.(G) gives algebraic information about G, for example H,(G) is the
abelianization.

H*(G) = characteristic classes of principal G-bundles. 1
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Goal/dream: Given G find H.(G).
Idea (Quillen): many groups come in families G, < G, < G5 < .. ..
Examples:
(i) Gn = GLn(F).
(i) G, = Sp, symmetric groups.
(iii) G, = By, braid groups.
(iv) Gg = Spyg(Z).
Definition: A family {G,} satisfies homological stability if
Hy4(Gn) — H4(Gn1q) are isos for d << n.
Questions:

1. Which families satisfy homological stability?
2. Can we compute the stable homology? i.e. compute
colimp Hg(Gp).
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Homological stability Il

Answer to question 2: (usually) YES! (Uses group completion
theorem), known in most examples of prev slide.

Answer to question 1: Most families satisfy homological stability! All
examples above do.

Thus, we can use homological stability to access H.(G) in some
range!

New question: How good is homological stability? i.e find the best
function f such that Hy(G,) stable for d < f(n).
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Motivation:

Theorem (Harer, Boldsen, Randal-Williams, Wahl, Galatius-Kupers-

Randal-Williams, Harr-Vistrup-Wahl)
The map

Ha(Tg1) = Ha(Tg41,1)
isaniso if d < 262
Theorem (S.-Wahl)

The map

Ha(Sp2g(Z)) — Ha(SP2g+1)(Z))

isaniso if d < 262
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Set-up for homological stability

There is a “standard” technique to prove homological stability
(Quillen, Randal-Williams-Wahl, Krannich).

Observation: in most cases, family G, can be defined as follows:

(C,®): symmetric or braided monoidal category (satisfying some
cancellation).

X € C object.
Gn = Gy, f — f @ idx.
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1. GLn(F): take C = f.d. vector spaces over F and isomorphisms,
@ = direct sum, X = F.

2. Spyg(7): take C = skew symmetric bilinear forms over Z and
isometries, © = orthogonal direct sum,

X = (72, <01 ;)) = H = hyperbolic form.

3. I'gq: take C = category with: objects ¥ ,

Morphisms= diffeomorphisms rel boundary up to isotopy.
& = boundary connected sum.

= =) = o

X = 21’1.
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Proving homological stability

Key: under the assumptions of set up, one gets family of
(n — 1)-dimensional complexes W,(X). Informally, p-simplices are
maps XP™" — X" in C.

Theorem (Quillen, Randal-Williams-Wahl): If the complexes W,(X)
are highly connected then the family G, has homological stability.

Fact: there is a quantitative statement too!

Limitation: Best stability range is f(n) = n/2, even if all W, were
contractible!!

However, for G4 = 'y, optimal stability is f(g) = (2g — 2)/3 and for
Sp.g(Z) at least this good...

Question: how to prove it?



Half-speed stabilization




The work of Harr-Vistrup-Wahl

Idea: X = X, 4 is not “one piece” but two!

Geometrically, ¥, ; = disc with 2 handles attached!



The work of Harr-Vistrup-Wahl

Idea: X = X, 4 is not “one piece” but two!
Geometrically, ¥, ; = disc with 2 handles attached!
Thus, try “X = single handle”, stabilize by one at the time.

Then, get new family G} — G, — G} — ... with Gg = G}, ,.



The work of Harr-Vistrup-Wahl

Idea: X = X, 4 is not “one piece” but two!

Geometrically, ¥, ; = disc with 2 handles attached!

Thus, try “X = single handle”, stabilize by one at the time.
Then, get new family G} — G, — G} — ... with Gg = G}, ,.

Key: use standard set-up to prove the G}, have stability with
f(n) = (n —2)/3, then get result!!



The work of Harr-Vistrup-Wahl

Idea: X = X, 4 is not “one piece” but two!

Geometrically, ¥, ; = disc with 2 handles attached!

Thus, try “X = single handle”, stabilize by one at the time.
Then, get new family G} — G, — G} — ... with Gg = G}, ,.

Key: use standard set-up to prove the G}, have stability with
f(n) = (n —2)/3, then get result!!

Informally: we add “half genus” surfaces to make family twice as big
then get better stability.



The work of Harr-Vistrup-Wahl

Idea: X = X, 4 is not “one piece” but two!

Geometrically, ¥, ; = disc with 2 handles attached!

Thus, try “X = single handle”, stabilize by one at the time.
Then, get new family G} — G, — G} — ... with Gg = G}, ,.

Key: use standard set-up to prove the G}, have stability with
f(n) = (n —2)/3, then get result!!

Informally: we add “half genus” surfaces to make family twice as big
then get better stability.

If we add one handle to ¥, , we get X ,.
Thus, Gyg., = g2

Haveloq = o, = Tiq =T =T — ...
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Geometry vs algebra

There is a canonical functor from category of surfaces and
diffeomorphisms relative boundary to the category of
skew-symmetric bilinear forms and isomorphisms:

S > Hy(X, 0%)

This allows us to compare family I'g ; to family Sp,g(7Z).
Question: How to extend to “half-genus” case?

Naive idea: H:(Xg,2,0%4.) = HI & Z.

Problem: new algebraic family does NOT have stability! Also,
stabilizing twice adds (72, (Z g>) not H.
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On geometry, one needs to be careful how to add handles: they
need to be linked!
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Bi-marked surfaces

On geometry, one needs to be careful how to add handles: they
need to be linked!

Answer (Harr-Vistrup-Wahl): Category M, with
Objects (T, lo U I1)

Morphisms: diffeomorphisms fixing marking up to isotopy.
Monoidal structure #: glue along marked intervals.
This solves problem of attaching handles!

10
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Idea: copy geometric construction algebraically!
Send (X, I, L ) — (M, A, 9) where

M = Hy(Z, lo U 1)

d:M=H(X,loUly) = Ho(lo U 1) = Z(by — bo) = 7Z

A: skew symmetric form on M defined as follows:
M = Hy(Z, o LI 7) <= Hq{(ZH, D" x I) 2 Hy(Z+), where
Y+t =¥ Uhandle. Then, use intersection pairing on .

()
&

(1=
SN

1"
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M = f.g. free Z-module.

X € A2MY skew-symmetric bilinear form.
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Formed spaces with boundary I

Category of formed spaces with boundary
Objects: (M, \, 9),

M = f.g. free Z-module.

X € A2MY skew-symmetric bilinear form.

9 € MY element of dual.

Morphisms: isos preserving the data.
Monoidal structure?

Answer: # induced from bimarked surfaces...

(M17)\1781)#(M2, /\2782) = (M1 S M27?751 @D 82)

12
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. . )\1 8182
Matrix notation:
<—6182 )\2 )

Clean algebraic interpretation:
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Formed spaces with boundary Il

. . )\1 8182
Matrix notation:
<—6182 )\2 )

Clean algebraic interpretation:
(M1 @ M2)\/ = M‘\I/ @ M;/, 81#82 = 81 @ 82.
/\2(M1 EB Mz)v = AzMY @ /\ZM;/ @ M‘\I/ ® M;/, A‘]#)\z = )\1 EB )\2 @ 81 ® 62.

Key: Cross-term has geometric meaning of classes crossing on extra
handle we added to define intersection.

Fact: # has braiding in nice cases (but not symmetric)... braiding
related to Bureau representations...

13
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Even and odd symplectic groups

Stabilizing element for surfaces D=

Stabilizing element for algebra X = (%, (0), id).
Key: Aut(X#29+7) = Sp,(Z)

We define the “odd” symplectic groups to be
SPag41(Z) = Aut(X#29+2) = Stabs,, (7,(v).

Theorem (S.-Wahl)
The family G, = Aut(X#") satisfies that Hy(Gn) — Hq(Gn4) is an iso if
d< 2

= 3
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Use set-up of homological stability.

In proving the complexes W,(X) are highly-connected one “copies”
geometric proof.
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Use set-up of homological stability.

In proving the complexes W,(X) are highly-connected one “copies”
geometric proof.

Idea: we can make sense of geometric objects algebraically!
Example: an arc from b, to b= class m € M with 9(m) = 1.

Non-separating arc= arc such that {m e — 9} unimodular.

15
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