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Homological stability



Group homology

G = (discrete) group.

Fact: there is a contractible space EG on which G acts freely, and we
denote BG = EG/G.

Note: π1(BG) = G, universal cover of BG is contractible.

Fact: BG is well-defined up to homotopy equivalence, it classifies
principal G-bundles.

Definition: the group homology of G, H∗(G), is defined to be the
homology of the space BG.

Example: G = Z then can take EG = R so BG = S1 so H∗(Z) is Z in
degrees 0, 1 and vanishes otherwise.

Facts:

H∗(G) gives algebraic information about G, for example H1(G) is the
abelianization.

H∗(G) = characteristic classes of principal G-bundles.
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Homological stability I

Goal/dream: Given G find H∗(G).

Idea (Quillen): many groups come in families G1 ↪→ G2 ↪→ G3 ↪→ . . . .

Examples:

(i) Gn = GLn(F).
(ii) Gn = Sn, symmetric groups.

(iii) Gn = βn, braid groups.
(iv) Gg = Sp2g(Z).
(v) Gg = Γg,1 = MCG(Σg,1)

Definition: A family {Gn} satisfies homological stability if
Hd(Gn)→ Hd(Gn+1) are isos for d << n.

Questions:

1. Which families satisfy homological stability?
2. Can we compute the stable homology? i.e. compute

colimn Hd(Gn).
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Homological stability II

Answer to question 2: (usually) YES! (Uses group completion
theorem), known in most examples of prev slide.

Answer to question 1: Most families satisfy homological stability! All
examples above do.

Thus, we can use homological stability to access H∗(G) in some
range!

New question: How good is homological stability? i.e find the best
function f such that Hd(Gn) stable for d ≤ f (n).
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Results, version I

Motivation:
Theorem (Harer, Boldsen, Randal-Williams, Wahl, Galatius–Kupers–
Randal-Williams, Harr–Vistrup–Wahl)
The map

Hd(Γg,1)→ Hd(Γg+1,1)

is an iso if d ≤ 2g−2
3

Theorem (S.-Wahl)

The map

Hd(Sp2g(Z))→ Hd(Sp2(g+1)(Z))

is an iso if d ≤ 2g−2
3
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Set-up for homological stability

There is a “standard” technique to prove homological stability
(Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family Gn can be defined as follows:

(C,⊕): symmetric or braided monoidal category (satisfying some
cancellation).

X ∈ C object.

Gn = Aut(X⊕n)

Gn ↪→ Gn+1, f 7→ f ⊕ idX .
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Examples

1. GLn(F): take C = f.d. vector spaces over F and isomorphisms,
⊕ = direct sum, X = F.

2. Sp2g(Z): take C = skew symmetric bilinear forms over Z and
isometries, ⊕ = orthogonal direct sum,

X = (Z2,

(
0 1
−1 0

)
) = H = hyperbolic form.

3. Γg,1: take C = category with: objects Σg,1

Morphisms= diffeomorphisms rel boundary up to isotopy.
⊕ = boundary connected sum.

X = Σ1,1.
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Proving homological stability

Key: under the assumptions of set up, one gets family of
(n− 1)-dimensional complexes Wn(X). Informally, p-simplices are
maps Xp+1 → Xn in C.

Theorem (Quillen, Randal-Williams–Wahl): If the complexes Wn(X)
are highly connected then the family Gn has homological stability.

Fact: there is a quantitative statement too!

Limitation: Best stability range is f (n) = n/2, even if all Wn were
contractible!!

However, for Gg = Γg,1 optimal stability is f (g) = (2g− 2)/3 and for
Sp2g(Z) at least this good...

Question: how to prove it?
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Half-speed stabilization



The work of Harr–Vistrup–Wahl

Idea: X = Σ1,1 is not “one piece” but two!

Geometrically, Σ1,1 = disc with 2 handles attached!

Thus, try “X = single handle”, stabilize by one at the time.

Then, get new family G′
1 ↪→ G′

2 ↪→ G′
3 ↪→ . . . with Gg = G′

2g+1.

Key: use standard set-up to prove the G′
n have stability with

f (n) = (n− 2)/3, then get result!!

Informally: we add “half genus” surfaces to make family twice as big
then get better stability.

If we add one handle to Σg,1 we get Σg,2.

Thus, G′
2g+2 = Γg,2.

Have Γ0,1 ↪→ Γ0,2 ↪→ Γ1,1 ↪→ Γ1,2 ↪→ Γ2,1 ↪→ . . .
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Geometry vs algebra

There is a canonical functor from category of surfaces and
diffeomorphisms relative boundary to the category of
skew-symmetric bilinear forms and isomorphisms:

Σ 7→ H1(Σ, ∂Σ)

This allows us to compare family Γg,1 to family Sp2g(Z).

Question: How to extend to “half-genus” case?

Naive idea: H1(Σg,2, ∂Σg,2) = Hg ⊕ Z.

Problem: new algebraic family does NOT have stability! Also,

stabilizing twice adds (Z2,

(
0 0
0 0

)
) not H.
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Bi-marked surfaces

On geometry, one needs to be careful how to add handles: they
need to be linked!

Answer (Harr-Vistrup-Wahl): Category M2 with

Objects (Σ, I0 ⊔ I1)

Morphisms: diffeomorphisms fixing marking up to isotopy.

Monoidal structure #: glue along marked intervals.

This solves problem of attaching handles!
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Formed spaces with boundary I

Idea: copy geometric construction algebraically!

Send (Σ, I0 ⊔ I1) 7→ (M, λ, ∂) where

M = H1(Σ, I0 ⊔ I1)

∂ : M = H1(Σ, I0 ⊔ I1)→ H̃0(I0 ⊔ I1) = Z⟨b1 − b0⟩ ∼= Z.

λ: skew symmetric form on M defined as follows:
M = H1(Σ, I0 ⊔ I1)

≃←− H1(Σ
+,D1 × I) ∼= H1(Σ

+), where
Σ+ = Σ ∪ handle. Then, use intersection pairing on Σ+.

11
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Formed spaces with boundary II

Category of formed spaces with boundary

Objects: (M, λ, ∂),

M = f.g. free Z-module.

λ ∈ Λ2M∨ skew-symmetric bilinear form.

∂ ∈ M∨ element of dual.

Morphisms: isos preserving the data.

Monoidal structure?

Answer: # induced from bimarked surfaces...

(M1, λ1, ∂1)#(M2, λ2, ∂2) = (M1 ⊕M2, ?, ∂1 ⊕ ∂2)

12
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Formed spaces with boundary III

Matrix notation:
(

λ1 ∂1∂2

−∂1∂2 λ2

)

Clean algebraic interpretation:

(M1 ⊕M2)
∨ = M∨

1 ⊕M∨
2 , ∂1#∂2 = ∂1 ⊕ ∂2.

Λ2(M1 ⊕M2)
∨ = Λ2M∨

1 ⊕ Λ2M∨
2 ⊕M∨

1 ⊗M∨
2 , λ1#λ2 = λ1 ⊕ λ2 ⊕ ∂1 ⊗ ∂2.

Key: Cross-term has geometric meaning of classes crossing on extra
handle we added to define intersection.

Fact: # has braiding in nice cases (but not symmetric)... braiding
related to Bureau representations...
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Even and odd symplectic groups

Stabilizing element for surfaces D=

Stabilizing element for algebra X = (Z, (0), id).

Key: Aut(X#2g+1) = Sp2g(Z)

We define the “odd” symplectic groups to be
Sp2g+1(Z) = Aut(X#2g+2) ∼= StabSp2g(Z)(v).

Theorem (S.-Wahl)
The family Gn = Aut(X#n) satisfies that Hd(Gn)→ Hd(Gn+1) is an iso if
d ≤ n−2

3 .
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The proof

Use set-up of homological stability.

In proving the complexes Wn(X) are highly-connected one “copies”
geometric proof.

Idea: we can make sense of geometric objects algebraically!!

Example: an arc from b0 to b1= class m ∈ M with ∂(m) = 1.

Non-separating arc= arc such that {m • −, ∂} unimodular.
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