Homological stability of even and odd symplectic groups

Ismael Sierra Nathalie Wahl 01/03/2024

University of Toronto

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote $BG = EG/G$.

Note: $\pi_1(BG) = G$, universal cover of *BG* is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote $BG = EG/G$.

Note: $\pi_1(BG) = G$, universal cover of *BG* is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Definition: the *group homology* of *G*, *H*∗(*G*), is defined to be the homology of the space *BG*.

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote $BG = EG/G$.

Note: $\pi_1(BG) = G$, universal cover of *BG* is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Definition: the *group homology* of *G*, *H*∗(*G*), is defined to be the homology of the space *BG*.

Example: $G = \mathbb{Z}$ then can take $EG = \mathbb{R}$ so $BG = S^1$ so $H_*(\mathbb{Z})$ is \mathbb{Z} in degrees 0, 1 and vanishes otherwise.

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote $BG = EG/G$.

Note: $\pi_1(BG) = G$, universal cover of *BG* is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Definition: the *group homology* of *G*, *H*∗(*G*), is defined to be the homology of the space *BG*.

Example: $G = \mathbb{Z}$ then can take $EG = \mathbb{R}$ so $BG = S^1$ so $H_*(\mathbb{Z})$ is \mathbb{Z} in degrees 0, 1 and vanishes otherwise.

Facts:

H[∗](*G*) gives algebraic information about *G*, for example *H*₁(*G*) is the abelianization.

 $H^*(G)$ = characteristic classes of principal *G*-bundles.

Goal/dream: Given *G* find *H*∗(*G*).

Goal/dream: Given *G* find *H*∗(*G*).

Idea (Quillen): many groups come in *families G*₁ \hookrightarrow *G*₂ \hookrightarrow *G*₃ \hookrightarrow \ldots .

Goal/dream: Given *G* find *H*∗(*G*).

Idea (Quillen): many groups come in *families G*₁ \hookrightarrow *G*₂ \hookrightarrow *G*₃ \hookrightarrow \ldots .

Examples:

(i) $G_n = GL_n(F)$. (ii) *Gⁿ* = *Sn*, symmetric groups. (iii) $G_n = \beta_n$, braid groups. (iv) $G_q = Sp_{2q}(\mathbb{Z})$. (v) $G_q = \Gamma_{q,1} = MCG(\Sigma_{q,1})$

Goal/dream: Given *G* find *H*∗(*G*).

Idea (Quillen): many groups come in *families G*₁ \hookrightarrow *G*₂ \hookrightarrow *G*₃ \hookrightarrow \ldots .

Examples:

(i) $G_n = GL_n(F)$. (ii) *Gⁿ* = *Sn*, symmetric groups. (iii) $G_n = \beta_n$, braid groups. (iv) $G_q = Sp_{2q}(\mathbb{Z})$. (v) $G_q = \Gamma_{q,1} = MCG(\Sigma_{q,1})$

Definition: A family {*Gn*} satisfies *homological stability* if $H_d(G_n) \to H_d(G_{n+1})$ are isos for $d \ll n$.

Goal/dream: Given *G* find *H*∗(*G*).

Idea (Quillen): many groups come in *families G*₁ \hookrightarrow *G*₂ \hookrightarrow *G*₃ \hookrightarrow \ldots .

Examples:

(i) $G_n = GL_n(F)$. (ii) *Gⁿ* = *Sn*, symmetric groups. (iii) $G_n = \beta_n$, braid groups. (iv) $G_q = Sp_{2q}(\mathbb{Z})$. (v) $G_q = \Gamma_{q,1} = MCG(\Sigma_{q,1})$

Definition: A family {*Gn*} satisfies *homological stability* if $H_d(G_n) \to H_d(G_{n+1})$ are isos for $d \ll n$.

Questions:

- 1. Which families satisfy homological stability?
- 2. Can we compute the *stable homology*? i.e. compute colim_n $H_d(G_n)$.

Answer to question 2: (usually) YES! (Uses group completion theorem), known in most examples of prev slide.

- Answer to question 2: (usually) YES! (Uses group completion theorem), known in most examples of prev slide.
- Answer to question 1: Most families satisfy homological stability! All examples above do.
- Answer to question 2: (usually) YES! (Uses group completion theorem), known in most examples of prev slide.
- Answer to question 1: Most families satisfy homological stability! All examples above do.
- Thus, we can use homological stability to access *H*∗(*G*) in some range!
- New question: How good is homological stability? i.e find *the best* function *f* such that $H_d(G_n)$ stable for $d \leq f(n)$.

Results, version I

Motivation:

Theorem (Harer, Boldsen, Randal-Williams, Wahl, Galatius–Kupers– Randal-Williams, Harr–Vistrup–Wahl) *The map*

 $H_d(\Gamma_{q,1}) \rightarrow H_d(\Gamma_{q+1,1})$

is an iso if d $\leq \frac{2g-2}{3}$ 3

Results, version I

Motivation:

Theorem (Harer, Boldsen, Randal-Williams, Wahl, Galatius–Kupers– Randal-Williams, Harr–Vistrup–Wahl) *The map*

 $H_d(\Gamma_{q,1}) \rightarrow H_d(\Gamma_{q+1,1})$

is an iso if d $\leq \frac{2g-2}{3}$ 3 **Theorem (S.-Wahl)**

The map

 $H_d(Sp_{2a}(\mathbb{Z})) \rightarrow H_d(Sp_{2(a+1)}(\mathbb{Z}))$

is an iso if d $\leq \frac{2g-2}{3}$ 3

There is a "standard" technique to prove homological stability (Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family *Gⁿ* can be defined as follows:

There is a "standard" technique to prove homological stability (Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family *Gⁿ* can be defined as follows:

(*C*, ⊕): symmetric or braided monoidal category (satisfying some cancellation).

 $X \in \mathcal{C}$ object.

There is a "standard" technique to prove homological stability (Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family *Gⁿ* can be defined as follows:

(*C*, ⊕): symmetric or braided monoidal category (satisfying some cancellation).

 $X \in \mathcal{C}$ object.

 $G_n = Aut(X^{\oplus n})$

 $G_n \hookrightarrow G_{n+1}$, $f \mapsto f \oplus id_X$.

Examples

1. $GL_n(F)$: take $C = f.d.$ vector spaces over *F* and isomorphisms, \oplus = direct sum, $X = F$.

Examples

- 1. $GL_n(F)$: take $C = f.d.$ vector spaces over *F* and isomorphisms, \oplus = direct sum, $X = F$.
- 2. *Sp*_{2q}(\mathbb{Z}): take *C* = skew symmetric bilinear forms over \mathbb{Z} and isometries, \oplus = orthogonal direct sum, $X=(\mathbb{Z}^2,\begin{pmatrix} \circ & 1 \ -1 & \circ \end{pmatrix})=H=$ hyperbolic form.

Examples

- 1. $GL_n(F)$: take $C = f.d.$ vector spaces over *F* and isomorphisms, \oplus = direct sum, $X = F$.
- 2. *Sp*_{2*g*}(\mathbb{Z}): take *C* = skew symmetric bilinear forms over \mathbb{Z} and isometries, \oplus = orthogonal direct sum, $X=(\mathbb{Z}^2,\begin{pmatrix} \circ & 1 \ -1 & \circ \end{pmatrix})=H=$ hyperbolic form.
- 3. $\Gamma_{g,1}$: take $\mathcal{C} =$ category with: objects $\Sigma_{g,1}$

Morphisms= diffeomorphisms rel boundary up to isotopy. \oplus = boundary connected sum.

 $X = \Sigma_{1,1}$.

Theorem (Quillen, Randal-Williams–Wahl): If the complexes *Wn*(*X*) are highly connected then the family *Gⁿ* has homological stability.

Fact: there is a quantitative statement too!

Theorem (Quillen, Randal-Williams–Wahl): If the complexes *Wn*(*X*) are highly connected then the family *Gⁿ* has homological stability.

Fact: there is a quantitative statement too!

Limitation: Best stability range is $f(n) = n/2$, even if all W_n were contractible!!

Theorem (Quillen, Randal-Williams–Wahl): If the complexes *Wn*(*X*) are highly connected then the family *Gⁿ* has homological stability.

Fact: there is a quantitative statement too!

Limitation: Best stability range is $f(n) = n/2$, even if all W_n were contractible!!

However, for $G_q = \Gamma_{q,1}$ optimal stability is $f(q) = (2q - 2)/3$ and for $Sp_{2q}(\mathbb{Z})$ at least this good...

Question: how to prove it?

[Half-speed stabilization](#page-26-0)

ldea: $X = \Sigma_{1,1}$ is not "one piece" but two! Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached!

ldea: $X = \Sigma_{1,1}$ is not "one piece" but two! Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached! Thus, try " $X =$ single handle", stabilize by one at the time. Then, get new family $G_1' \hookrightarrow G_2' \hookrightarrow G_3' \hookrightarrow \dots$ with $G_g = G_{2g+1}'$.

ldea: $X = \Sigma_{1,1}$ is not "one piece" but two! Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached! Thus, try $X = \text{single handle}$, stabilize by one at the time. Then, get new family $G_1' \hookrightarrow G_2' \hookrightarrow G_3' \hookrightarrow \dots$ with $G_g = G_{2g+1}'$. Key: use standard set-up to prove the *G* ′ *ⁿ* have stability with $f(n) = (n-2)/3$, then get result!!

ldea: $X = \Sigma_{1,1}$ is not "one piece" but two!

Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached!

Thus, try $X = \text{single handle}$, stabilize by one at the time.

Then, get new family $G_1' \hookrightarrow G_2' \hookrightarrow G_3' \hookrightarrow \dots$ with $G_g = G_{2g+1}'$.

Key: use standard set-up to prove the *G* ′ *ⁿ* have stability with $f(n) = (n-2)/3$, then get result!!

Informally: we add "half genus" surfaces to make family twice as big then get better stability.

ldea: $X = \Sigma_{1,1}$ is not "one piece" but two!

Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached!

Thus, try $X = \text{single handle}$, stabilize by one at the time.

Then, get new family $G_1' \hookrightarrow G_2' \hookrightarrow G_3' \hookrightarrow \dots$ with $G_g = G_{2g+1}'$.

Key: use standard set-up to prove the *G* ′ *ⁿ* have stability with $f(n) = (n-2)/3$, then get result!!

Informally: we add "half genus" surfaces to make family twice as big then get better stability.

If we add one handle to $\Sigma_{q,1}$ we get $\Sigma_{q,2}$.

 $Thus, G'_{2g+2} = Γ_{g,2}.$ $\text{Have } \Gamma_{0,1} \hookrightarrow \Gamma_{0,2} \hookrightarrow \Gamma_{1,1} \hookrightarrow \Gamma_{1,2} \hookrightarrow \Gamma_{2,1} \hookrightarrow \ldots$

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

This allows us to compare family $\Gamma_{q,1}$ to family $Sp_{2q}(\mathbb{Z})$. Question: How to extend to "half-genus" case?

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

This allows us to compare family $\Gamma_{q,1}$ to family $Sp_{2q}(\mathbb{Z})$. Question: How to extend to "half-genus" case? Naive idea: $H_1(\Sigma_{g,2}, \partial \Sigma_{g,2}) = H^g \oplus \mathbb{Z}$.

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

This allows us to compare family $\Gamma_{q,1}$ to family $Sp_{2q}(\mathbb{Z})$.

Question: How to extend to "half-genus" case?

Naive idea: $H_1(\Sigma_{g,2}, \partial \Sigma_{g,2}) = H^g \oplus \mathbb{Z}$.

Problem: new algebraic family does NOT have stability! Also, stabilizing twice adds $(\mathbb{Z}^2,\begin{pmatrix} \mathtt{o} & \mathtt{o} \ \mathtt{o} & \mathtt{o} \end{pmatrix})$ not H.

On geometry, one needs to be careful how to add handles: they need to be linked!

Bi-marked surfaces

On geometry, one needs to be careful how to add handles: they need to be linked!

Answer (Harr-Vistrup-Wahl): Category M₂ with

Objects (Σ, I_0 □ I_1)

Morphisms: diffeomorphisms fixing marking up to isotopy. Monoidal structure $\#$: glue along marked intervals. This solves problem of attaching handles!

Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where

Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where $M = H_1(Σ, I_0 ∪ I_1)$

Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where $M = H_1(\Sigma, I_0 \sqcup I_1)$ $\partial : M = H_1(\Sigma, I_0 \sqcup I_1) \rightarrow \tilde{H}_0(I_0 \sqcup I_1) = \mathbb{Z}\langle b_1 - b_0 \rangle \cong \mathbb{Z}.$ Idea: copy geometric construction algebraically!

Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where

 $M = H_1(\Sigma, I_0 \sqcup I_1)$

 $\partial : M = H_1(\Sigma, I_0 \sqcup I_1) \rightarrow \tilde{H}_0(I_0 \sqcup I_1) = \mathbb{Z}\langle b_1 - b_0 \rangle \cong \mathbb{Z}.$

λ: skew symmetric form on *M* defined as follows: $M = H_1(\Sigma, I_0 \sqcup I_1) \stackrel{\simeq}{\leftarrow} H_1(\Sigma^+, D^1 \times I) \cong H_1(\Sigma^+),$ where $\Sigma^+=\Sigma\cup$ handle. Then, use intersection pairing on $\Sigma^+.$

Objects: (*M*, λ, ∂),

Objects: (*M*, λ, ∂),

 $M = f.g.$ free \mathbb{Z} -module.

- Objects: (*M*, λ, ∂),
- $M = f.g.$ free \mathbb{Z} -module.
- $\lambda \in \Lambda$ ²M $^\vee$ skew-symmetric bilinear form.

Objects: (*M*, λ, ∂),

- $M = f.g.$ free \mathbb{Z} -module.
- $\lambda \in \Lambda$ ²M $^\vee$ skew-symmetric bilinear form.
- ∂ ∈ *M*[∨] element of dual.

Objects: (*M*, λ, ∂),

- $M = f.g.$ free \mathbb{Z} -module.
- $\lambda \in \Lambda$ ²M $^\vee$ skew-symmetric bilinear form.
- ∂ ∈ *M*[∨] element of dual.

Morphisms: isos preserving the data.

Monoidal structure?

Objects: (*M*, λ, ∂),

- $M = f.g.$ free \mathbb{Z} -module.
- $\lambda \in \Lambda$ ²M $^\vee$ skew-symmetric bilinear form.
- ∂ ∈ *M*[∨] element of dual.

Morphisms: isos preserving the data.

Monoidal structure?

Answer: $\#$ induced from bimarked surfaces...

 $(M_1, \lambda_1, \partial_1)$ $\# (M_2, \lambda_2, \partial_2) = (M_1 \oplus M_2, ?, \partial_1 \oplus \partial_2)$

Matrix notation:
$$
\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}
$$

Matrix notation:
$$
\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}
$$

Clean algebraic interpretation:

 $(M_1 \oplus M_2)^{\vee} = M_1^{\vee} \oplus M_2^{\vee}$, $\partial_1 \# \partial_2 = \partial_1 \oplus \partial_2$.

Matrix notation:
$$
\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}
$$

Clean algebraic interpretation:

 $(M_1 \oplus M_2)^{\vee} = M_1^{\vee} \oplus M_2^{\vee}$, $\partial_1 \# \partial_2 = \partial_1 \oplus \partial_2$.

 $\Lambda^2(M_1\oplus M_2)^\vee = \Lambda^2M_1^\vee \oplus \Lambda^2M_2^\vee \oplus M_1^\vee \otimes M_2^\vee$, $\lambda_1 \# \lambda_2 = \lambda_1 \oplus \lambda_2 \oplus \partial_1 \otimes \partial_2$.

Matrix notation:
$$
\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}
$$

Clean algebraic interpretation:

$$
(M_1 \oplus M_2)^{\vee} = M_1^{\vee} \oplus M_2^{\vee}, \partial_1 \# \partial_2 = \partial_1 \oplus \partial_2.
$$

 $\Lambda^2(M_1\oplus M_2)^\vee = \Lambda^2M_1^\vee \oplus \Lambda^2M_2^\vee \oplus M_1^\vee \otimes M_2^\vee$, $\lambda_1 \# \lambda_2 = \lambda_1 \oplus \lambda_2 \oplus \partial_1 \otimes \partial_2$.

Key: Cross-term has geometric meaning of classes crossing on extra handle we added to define intersection.

Fact: $#$ has braiding in nice cases (but not symmetric)... braiding related to Bureau representations...

Stabilizing element for surfaces *D*=

Stabilizing element for algebra $X = (\mathbb{Z}, \mathsf{(o)}, \mathsf{id}).$

Stabilizing element for surfaces *D*=

Stabilizing element for algebra $X = (\mathbb{Z}, \mathsf{(o)}, \mathsf{id}).$ $Key: Aut(X^{\#2g+1}) = Sp_{2g}(\mathbb{Z})$

Stabilizing element for surfaces *D*=

Stabilizing element for algebra $X = (\mathbb{Z}, \mathsf{(o)}, \mathsf{id}).$

 $Key: Aut(X^{\#2g+1}) = Sp_{2g}(\mathbb{Z})$

We define the "odd" symplectic groups to be $\mathsf{Sp}_{2g+1}(\mathbb{Z}) = \mathsf{Aut}(X^{\#2g+2}) \cong \mathsf{Stab}_{\mathsf{Sp}_{2g}(\mathbb{Z})}(v).$

Stabilizing element for surfaces *D*=

Stabilizing element for algebra $X = (\mathbb{Z}, \mathsf{(o)}, \mathsf{id})$.

 $Key: Aut(X^{\#2g+1}) = Sp_{2g}(\mathbb{Z})$

We define the "odd" symplectic groups to be $\mathsf{Sp}_{2g+1}(\mathbb{Z}) = \mathsf{Aut}(X^{\#2g+2}) \cong \mathsf{Stab}_{\mathsf{Sp}_{2g}(\mathbb{Z})}(v).$

Theorem (S.-Wahl) $\mathsf{The\ family}\ G_n = \mathsf{Aut}(X^{\#n})\ \mathsf{satisfies} \ \mathsf{that}\ H_d(\mathsf{G}_n) \rightarrow \mathsf{H}_d(\mathsf{G}_{n+1})\ \mathsf{is} \ \mathsf{an} \ \mathsf{iso} \ \mathsf{if}$ $d \leq \frac{n-2}{3}$.

Use set-up of homological stability.

In proving the complexes $W_n(X)$ are highly-connected one "copies" geometric proof.

Use set-up of homological stability.

In proving the complexes *Wn*(*X*) are highly-connected one "copies" geometric proof.

Idea: we can make sense of geometric objects algebraically!!

Example: an *arc* from b_0 to b_1 = class $m \in M$ with $\partial(m) = 1$.

Non-separating arc= arc such that {*m* • −, ∂} unimodular.