Homological stability of even and odd symplectic groups

Ismael Sierra Nathalie Wahl 01/03/2024

University of Toronto

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote BG = EG/G.

Note: $\pi_1(BG) = G$, universal cover of *BG* is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote BG = EG/G.

Note: $\pi_1(BG) = G$, universal cover of BG is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Definition: the group homology of G, $H_*(G)$, is defined to be the homology of the space BG.

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote BG = EG/G.

Note: $\pi_1(BG) = G$, universal cover of BG is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Definition: the group homology of G, $H_*(G)$, is defined to be the homology of the space BG.

Example: $G = \mathbb{Z}$ then can take $EG = \mathbb{R}$ so $BG = S^1$ so $H_*(\mathbb{Z})$ is \mathbb{Z} in degrees 0, 1 and vanishes otherwise.

Fact: there is a *contractible* space *EG* on which *G* acts freely, and we denote BG = EG/G.

Note: $\pi_1(BG) = G$, universal cover of BG is contractible.

Fact: *BG* is well-defined up to homotopy equivalence, it classifies principal *G*-bundles.

Definition: the group homology of G, $H_*(G)$, is defined to be the homology of the space BG.

Example: $G = \mathbb{Z}$ then can take $EG = \mathbb{R}$ so $BG = S^1$ so $H_*(\mathbb{Z})$ is \mathbb{Z} in degrees 0, 1 and vanishes otherwise.

Facts:

 $H_*(G)$ gives algebraic information about G, for example $H_1(G)$ is the abelianization.

 $H^*(G)$ = characteristic classes of principal G-bundles.

Goal/dream: Given G find $H_*(G)$.

Goal/dream: Given G find $H_*(G)$.

Idea (Quillen): many groups come in families $G_1 \hookrightarrow G_2 \hookrightarrow G_3 \hookrightarrow \dots$

Goal/dream: Given G find $H_*(G)$.

Idea (Quillen): many groups come in *families* $G_1 \hookrightarrow G_2 \hookrightarrow G_3 \hookrightarrow \dots$

Examples:

(i) $G_n = GL_n(F)$. (ii) $G_n = S_n$, symmetric groups. (iii) $G_n = \beta_n$, braid groups. (iv) $G_g = Sp_{2g}(\mathbb{Z})$. (v) $G_g = \Gamma_{g,1} = MCG(\Sigma_{g,1})$

Goal/dream: Given G find $H_*(G)$.

Idea (Quillen): many groups come in families $G_1 \hookrightarrow G_2 \hookrightarrow G_3 \hookrightarrow \dots$

Examples:

(i) $G_n = GL_n(F)$. (ii) $G_n = S_n$, symmetric groups. (iii) $G_n = \beta_n$, braid groups. (iv) $G_g = Sp_{2g}(\mathbb{Z})$. (v) $G_g = \Gamma_{g,1} = MCG(\Sigma_{g,1})$

Definition: A family $\{G_n\}$ satisfies homological stability if $H_d(G_n) \rightarrow H_d(G_{n+1})$ are isos for $d \ll n$.

Goal/dream: Given G find $H_*(G)$.

Idea (Quillen): many groups come in families $G_1 \hookrightarrow G_2 \hookrightarrow G_3 \hookrightarrow \dots$

Examples:

(i) $G_n = GL_n(F)$. (ii) $G_n = S_n$, symmetric groups. (iii) $G_n = \beta_n$, braid groups. (iv) $G_g = Sp_{2g}(\mathbb{Z})$. (v) $G_g = \Gamma_{g,1} = MCG(\Sigma_{g,1})$

Definition: A family $\{G_n\}$ satisfies homological stability if $H_d(G_n) \rightarrow H_d(G_{n+1})$ are isos for $d \ll n$.

Questions:

- 1. Which families satisfy homological stability?
- 2. Can we compute the stable homology? i.e. compute $\operatorname{colim}_n H_d(G_n)$.

Answer to question 2: (usually) YES! (Uses group completion theorem), known in most examples of prev slide.

- Answer to question 2: (usually) YES! (Uses group completion theorem), known in most examples of prev slide.
- Answer to question 1: Most families satisfy homological stability! All examples above do.

- Answer to question 2: (usually) YES! (Uses group completion theorem), known in most examples of prev slide.
- Answer to question 1: Most families satisfy homological stability! All examples above do.

Thus, we can use homological stability to access $H_*(G)$ in some range!

New question: How good is homological stability? i.e find the best function f such that $H_d(G_n)$ stable for $d \le f(n)$.

Results, version I

Motivation:

Theorem (Harer, Boldsen, Randal-Williams, Wahl, Galatius-Kupers-Randal-Williams, Harr-Vistrup-Wahl) *The map*

$$H_d(\Gamma_{g,1}) \to H_d(\Gamma_{g+1,1})$$

is an iso if $d \leq \frac{2g-2}{3}$

Results, version I

Motivation:

Theorem (Harer, Boldsen, Randal-Williams, Wahl, Galatius–Kupers– Randal-Williams, Harr–Vistrup–Wahl) *The map*

$$H_d(\Gamma_{g,1}) \rightarrow H_d(\Gamma_{g+1,1})$$

is an iso if $d \leq \frac{2g-2}{3}$

Theorem (S.-Wahl)

The map

$$H_d(Sp_{2g}(\mathbb{Z})) \to H_d(Sp_{2(g+1)}(\mathbb{Z}))$$

is an iso if d $\leq \frac{2g-2}{3}$

There is a "standard" technique to prove homological stability (Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family G_n can be defined as follows:

There is a "standard" technique to prove homological stability (Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family G_n can be defined as follows:

 $(\mathbf{C},\oplus)\mathbf{:}$ symmetric or braided monoidal category (satisfying some cancellation).

 $X \in C$ object.

There is a "standard" technique to prove homological stability (Quillen, Randal-Williams–Wahl, Krannich).

Observation: in most cases, family G_n can be defined as follows:

 $(\mathbf{C},\oplus)\mathbf{:}$ symmetric or braided monoidal category (satisfying some cancellation).

 $X \in C$ object.

 $G_n = Aut(X^{\oplus n})$

 $G_n \hookrightarrow G_{n+1}, f \mapsto f \oplus \operatorname{id}_X.$

Examples

1. $GL_n(F)$: take C = f.d. vector spaces over F and isomorphisms, $\oplus = \text{direct sum}, X = F.$

Examples

- 1. $GL_n(F)$: take C = f.d. vector spaces over F and isomorphisms, $\oplus = \text{direct sum}, X = F.$
- 2. $Sp_{2g}(\mathbb{Z})$: take C = skew symmetric bilinear forms over \mathbb{Z} and isometries, $\oplus =$ orthogonal direct sum, $X = (\mathbb{Z}^2, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}) = H =$ hyperbolic form.

Examples

- 1. $GL_n(F)$: take C = f.d. vector spaces over F and isomorphisms, $\oplus = \text{direct sum}, X = F.$
- 2. $Sp_{2g}(\mathbb{Z})$: take C = skew symmetric bilinear forms over \mathbb{Z} and isometries, $\oplus =$ orthogonal direct sum, $X = (\mathbb{Z}^2, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}) = H =$ hyperbolic form.
- 3. $\Gamma_{g,1}$: take C = category with: objects $\Sigma_{g,1}$

 $X = \Sigma_{1,1}.$

Key: under the assumptions of set up, one gets family of (n-1)-dimensional complexes $W_n(X)$. Informally, *p*-simplices are maps $X^{p+1} \to X^n$ in *C*.

Key: under the assumptions of set up, one gets family of (n-1)-dimensional complexes $W_n(X)$. Informally, *p*-simplices are maps $X^{p+1} \rightarrow X^n$ in *C*.

Theorem (Quillen, Randal-Williams–Wahl): If the complexes $W_n(X)$ are highly connected then the family G_n has homological stability.

Fact: there is a quantitative statement too!

Key: under the assumptions of set up, one gets family of (n-1)-dimensional complexes $W_n(X)$. Informally, *p*-simplices are maps $X^{p+1} \rightarrow X^n$ in *C*.

Theorem (Quillen, Randal-Williams–Wahl): If the complexes $W_n(X)$ are highly connected then the family G_n has homological stability.

Fact: there is a quantitative statement too!

Limitation: Best stability range is f(n) = n/2, even if all W_n were contractible!!

Key: under the assumptions of set up, one gets family of (n-1)-dimensional complexes $W_n(X)$. Informally, *p*-simplices are maps $X^{p+1} \rightarrow X^n$ in *C*.

Theorem (Quillen, Randal-Williams–Wahl): If the complexes $W_n(X)$ are highly connected then the family G_n has homological stability.

Fact: there is a quantitative statement too!

Limitation: Best stability range is f(n) = n/2, even if all W_n were contractible!!

However, for $G_g = \Gamma_{g,1}$ optimal stability is f(g) = (2g - 2)/3 and for $Sp_{2g}(\mathbb{Z})$ at least this good...

Question: how to prove it?

Half-speed stabilization

Idea: $X = \Sigma_{1,1}$ is not "one piece" but two! Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached! Idea: $X = \Sigma_{1,1}$ is not "one piece" but two! Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached! Thus, try "X = single handle", stabilize by one at the time. Then, get new family $G'_1 \hookrightarrow G'_2 \hookrightarrow G'_3 \hookrightarrow \ldots$ with $G_g = G'_{2g+1}$. Idea: $X = \Sigma_{1,1}$ is not "one piece" but two! Geometrically, $\Sigma_{1,1} =$ disc with 2 handles attached! Thus, try "X = single handle", stabilize by one at the time. Then, get new family $G'_1 \hookrightarrow G'_2 \hookrightarrow G'_3 \hookrightarrow \ldots$ with $G_g = G'_{2g+1}$. Key: use standard set-up to prove the G'_n have stability with

f(n) = (n-2)/3, then get result!!

Idea: $X = \Sigma_{1,1}$ is not "one piece" but two!

Geometrically, $\Sigma_{1,1} = disc$ with 2 handles attached!

Thus, try "X = single handle", stabilize by one at the time.

Then, get new family $G'_1 \hookrightarrow G'_2 \hookrightarrow G'_3 \hookrightarrow \ldots$ with $G_g = G'_{2g+1}$.

Key: use standard set-up to prove the G'_n have stability with f(n) = (n - 2)/3, then get result!!

Informally: we add "half genus" surfaces to make family twice as big then get better stability.

Idea: $X = \Sigma_{1,1}$ is not "one piece" but two!

Geometrically, $\Sigma_{1,1} = \text{disc}$ with 2 handles attached!

Thus, try "X = single handle", stabilize by one at the time.

Then, get new family $G'_1 \hookrightarrow G'_2 \hookrightarrow G'_3 \hookrightarrow \ldots$ with $G_g = G'_{2g+1}$.

Key: use standard set-up to prove the G'_n have stability with f(n) = (n - 2)/3, then get result!!

Informally: we add "half genus" surfaces to make family twice as big then get better stability.

If we add one handle to $\Sigma_{g,1}$ we get $\Sigma_{g,2}$.

Thus, $G'_{2g+2} = \Gamma_{g,2}$. Have $\Gamma_{0,1} \hookrightarrow \Gamma_{0,2} \hookrightarrow \Gamma_{1,1} \hookrightarrow \Gamma_{1,2} \hookrightarrow \Gamma_{2,1} \hookrightarrow \dots$

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

 $\Sigma\mapsto H_1(\Sigma,\partial\Sigma)$

This allows us to compare family $\Gamma_{g,1}$ to family $Sp_{2g}(\mathbb{Z})$. Question: How to extend to "half-genus" case?

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

This allows us to compare family $\Gamma_{g,1}$ to family $Sp_{2g}(\mathbb{Z})$. Question: How to extend to "half-genus" case? Naive idea: $H_1(\Sigma_{g,2}, \partial \Sigma_{g,2}) = H^g \oplus \mathbb{Z}$.

 $\Sigma \mapsto H_1(\Sigma, \partial \Sigma)$

This allows us to compare family $\Gamma_{g,1}$ to family $Sp_{2g}(\mathbb{Z})$.

Question: How to extend to "half-genus" case?

Naive idea: $H_1(\Sigma_{g,2}, \partial \Sigma_{g,2}) = H^g \oplus \mathbb{Z}$.

Problem: new algebraic family does NOT have stability! Also, stabilizing twice adds $(\mathbb{Z}^2, \begin{pmatrix} o & o \\ o & o \end{pmatrix})$ not H.

On geometry, one needs to be careful how to add handles: they need to be linked!

On geometry, one needs to be careful how to add handles: they need to be linked!

Answer (Harr-Vistrup-Wahl): Category M₂ with

Objects $(\Sigma, I_0 \sqcup I_1)$

Morphisms: diffeomorphisms fixing marking up to isotopy. Monoidal structure #: glue along marked intervals. This solves problem of attaching handles! Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where $M = H_1(\Sigma, I_0 \sqcup I_1)$ Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where $M = H_1(\Sigma, I_0 \sqcup I_1)$ $\partial : M = H_1(\Sigma, I_0 \sqcup I_1) \rightarrow \tilde{H}_0(I_0 \sqcup I_1) = \mathbb{Z} \langle b_1 - b_0 \rangle \cong \mathbb{Z}.$ Idea: copy geometric construction algebraically! Send $(\Sigma, I_0 \sqcup I_1) \mapsto (M, \lambda, \partial)$ where $M = H_1(\Sigma, I_0 \sqcup I_1)$ $\partial : M = H_1(\Sigma, I_0 \sqcup I_1) \rightarrow \tilde{H}_0(I_0 \sqcup I_1) = \mathbb{Z} \langle b_1 - b_0 \rangle \cong \mathbb{Z}.$

 λ : skew symmetric form on M defined as follows: $M = H_1(\Sigma, I_0 \sqcup I_1) \xleftarrow{\simeq} H_1(\Sigma^+, D^1 \times I) \cong H_1(\Sigma^+)$, where $\Sigma^+ = \Sigma \cup$ handle. Then, use intersection pairing on Σ^+ .

Objects: (M, λ, ∂) ,

Objects: (M, λ, ∂) ,

M = f.g. free \mathbb{Z} -module.

- Objects: (M, λ, ∂) ,
- M = f.g. free \mathbb{Z} -module.
- $\lambda \in \Lambda^2 M^\vee$ skew-symmetric bilinear form.

- Objects: (M, λ, ∂) ,
- M = f.g. free \mathbb{Z} -module.
- $\lambda \in \Lambda^2 M^{\vee}$ skew-symmetric bilinear form.
- $\partial \in M^{\vee}$ element of dual.

Objects: (M, λ, ∂) ,

- M = f.g. free \mathbb{Z} -module.
- $\lambda \in \Lambda^2 M^{\vee}$ skew-symmetric bilinear form.
- $\partial \in M^{\vee}$ element of dual.

Morphisms: isos preserving the data.

Monoidal structure?

Objects: (M, λ, ∂) ,

- M = f.g. free \mathbb{Z} -module.
- $\lambda \in \Lambda^2 M^{\vee}$ skew-symmetric bilinear form.
- $\partial \in M^{\vee}$ element of dual.

Morphisms: isos preserving the data.

Monoidal structure?

Answer: # induced from bimarked surfaces...

 $(M_1, \lambda_1, \partial_1) \# (M_2, \lambda_2, \partial_2) = (M_1 \oplus M_2, ?, \partial_1 \oplus \partial_2)$

Matrix notation:
$$\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}$$

Matrix notation:
$$\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}$$

Clean algebraic interpretation:

 $(M_1\oplus M_2)^{\vee}=M_1^{\vee}\oplus M_2^{\vee}\text{, }\partial_1\#\partial_2=\partial_1\oplus\partial_2\text{.}$

Matrix notation:
$$\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}$$

Clean algebraic interpretation:

 $(M_1 \oplus M_2)^{\vee} = M_1^{\vee} \oplus M_2^{\vee}, \, \partial_1 \# \partial_2 = \partial_1 \oplus \partial_2.$

 $\Lambda^{2}(M_{1}\oplus M_{2})^{\vee}=\Lambda^{2}M_{1}^{\vee}\oplus\Lambda^{2}M_{2}^{\vee}\oplus M_{1}^{\vee}\otimes M_{2}^{\vee}, \lambda_{1}\#\lambda_{2}=\lambda_{1}\oplus\lambda_{2}\oplus\partial_{1}\otimes\partial_{2}.$

Matrix notation:
$$\begin{pmatrix} \lambda_1 & \partial_1 \partial_2 \\ -\partial_1 \partial_2 & \lambda_2 \end{pmatrix}$$

Clean algebraic interpretation:

$$(M_1 \oplus M_2)^{\vee} = M_1^{\vee} \oplus M_2^{\vee}, \, \partial_1 \# \partial_2 = \partial_1 \oplus \partial_2.$$

 $\Lambda^{2}(M_{1}\oplus M_{2})^{\vee}=\Lambda^{2}M_{1}^{\vee}\oplus\Lambda^{2}M_{2}^{\vee}\oplus M_{1}^{\vee}\otimes M_{2}^{\vee}, \lambda_{1}\#\lambda_{2}=\lambda_{1}\oplus\lambda_{2}\oplus\partial_{1}\otimes\partial_{2}.$

Key: Cross-term has geometric meaning of classes crossing on extra handle we added to define intersection.

Fact: *#* has braiding in nice cases (but not symmetric)... braiding related to Bureau representations...

Stabilizing element for surfaces D=

Stabilizing element for algebra $X = (\mathbb{Z}, (0), id)$.

Stabilizing element for surfaces D=

Stabilizing element for algebra $X = (\mathbb{Z}, (0), id)$. Key: $Aut(X^{\#2g+1}) = Sp_{2g}(\mathbb{Z})$

Stabilizing element for surfaces D=

Stabilizing element for algebra $X = (\mathbb{Z}, (0), id)$.

Key: $Aut(X^{\#2g+1}) = Sp_{2g}(\mathbb{Z})$

We define the "odd" symplectic groups to be $Sp_{2g+1}(\mathbb{Z}) = Aut(X^{\#2g+2}) \cong Stab_{Sp_{2g}(\mathbb{Z})}(v).$

Stabilizing element for surfaces D=

Stabilizing element for algebra $X = (\mathbb{Z}, (0), id)$.

Key: $Aut(X^{\#2g+1}) = Sp_{2g}(\mathbb{Z})$

We define the "odd" symplectic groups to be $Sp_{2g+1}(\mathbb{Z}) = Aut(X^{\#2g+2}) \cong Stab_{Sp_{2g}(\mathbb{Z})}(v).$

Theorem (S.-Wahl) The family $G_n = Aut(X^{\#n})$ satisfies that $H_d(G_n) \to H_d(G_{n+1})$ is an iso if $d \leq \frac{n-2}{3}$. Use set-up of homological stability.

In proving the complexes $W_n(X)$ are highly-connected one "copies" geometric proof.

Use set-up of homological stability.

In proving the complexes $W_n(X)$ are highly-connected one "copies" geometric proof.

Idea: we can make sense of geometric objects algebraically!!

Example: an arc from b_0 to b_1 = class $m \in M$ with $\partial(m) = 1$.

Non-separating arc= arc such that $\{m \bullet -, \partial\}$ unimodular.