Splitting Complexes

Ismael Sierra

University of Cambridge

General Set-up

 $X_0 \xrightarrow{s} X_1 \xrightarrow{s} X_2 \xrightarrow{s} \cdots$: sequence of spaces with maps between them. Maps s are called "stabilization maps"

Question: Can we find a divergent function $f : \mathbb{N} \to \mathbb{N}$ such that $s_* : H_d(X_{n-1}) \to H_d(X_n)$ is an isomorphism for d < f(n)?

If so we say the family has homological stability

In practice: $f(n) = \lambda n + c$, λ = slope of the stability.

General Set-up

 $X_0 \xrightarrow{s} X_1 \xrightarrow{s} X_2 \xrightarrow{s} \cdots$: sequence of spaces with maps between them. Maps s are called "stabilization maps"

Question: Can we find a divergent function $f : \mathbb{N} \to \mathbb{N}$ such that $s_* : H_d(X_{n-1}) \to H_d(X_n)$ is an isomorphism for d < f(n)?

If so we say the family has homological stability

In practice: $f(n) = \lambda n + c$, λ = slope of the stability.

Classical approach

Studies case $X_n = BG_n$, G_n groups such that $\bigsqcup_n G_n$ is braided monoidal.

Based on studying connectivity of "destabilization complexes".

Homological Stability via *E*_k-algebras

Recall: E_k = little k-discs operad.

$$E_2 \in E_2(3)$$

Homological Stability via *E*_k-algebras

Recall: E_k = little k-discs operad.

$$E_2 \in E_2(3)$$

New set-up

Assume $R := \bigsqcup_n X_n \in \operatorname{Top}^{\mathbb{N}}$ is a (graded) E_k -algebra.

Stabilization maps s induced by the E_k -product.

Example: In the classical set-up $R = \bigsqcup_n BG_n$ is a graded E_2 -algebra.

Homological Stability via *E*_k-algebras

Recall: E_k = little k-discs operad.

$$E_2$$
 $\in E_2(3)$

New set-up

Assume $R := \bigsqcup_n X_n \in \operatorname{Top}^{\mathbb{N}}$ is a (graded) E_k -algebra.

Stabilization maps s induced by the E_k -product.

Example: In the classical set-up $R = \bigsqcup_n BG_n$ is a graded E_2 -algebra.

Cellular *E_k*-algebras approach (Galatius–Kupers–Randal-Williams)

Idea: Use the full *E_k*-structure to prove (better) homological stability results.

Notion of "cell attachment" in the category of graded E_k -algebras.

Thus get notion of cellular E_k -algebras.

There is a cellular approximation theorem.

Cells are bigraded: $D^{n,d}$ = d-cell in grading n. The slope of a cell is d/n.

Notion of "cell attachment" in the category of graded E_k -algebras.

Thus get notion of cellular E_k -algebras.

There is a cellular approximation theorem.

Cells are bigraded: $D^{n,d}$ = d-cell in grading n. The slope of a cell is d/n.

Key:

"If all the cells have high slope then we get good homological stability"

Notion of "cell attachment" in the category of graded E_k -algebras.

Thus get notion of cellular E_k -algebras.

There is a cellular approximation theorem.

Cells are bigraded: $D^{n,d}$ = d-cell in grading n. The slope of a cell is d/n.

Key:

"If all the cells have high slope then we get good homological stability"

Main input: a lower bound for the slope of all cells.

Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build *R* cellularly.

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part, but also very explicit!

Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build *R* cellularly.

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part, but also very explicit!

Given "object" x, its splitting complex, $S_{\bullet}(x)$ is a semisimplicial space with

- 1. *p*-simplices: ways of decomposing *x* into *p* + 2 objects of positive grading.
- 2. Face maps: d_i glues *i*th and (i + 1)th objects.

Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build *R* cellularly.

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part, but also very explicit!

Given "object" x, its *splitting complex*, $S_{\bullet}(x)$ is a semisimplicial space with

- 1. *p*-simplices: ways of decomposing *x* into *p* + 2 objects of positive grading.
- 2. Face maps: d_i glues *i*th and (i + 1)th objects.

Goal: Estimate the connectivity of $S_{\bullet}(x)$ in terms of the grading of x. Usually: If x is in grading x then $S_{\bullet}(x)$ is (n - 3)-connected. Consider category of finite sets and bijections. Give it a symmetric monoidal structure by disjoint union. Its classifying space

$$R = \bigsqcup_n BS_n$$

is an E_{∞} -algebra.

Consider category of finite sets and bijections. Give it a symmetric monoidal structure by disjoint union. Its classifying space

$$R = \bigsqcup_n BS_n$$

is an E_{∞} -algebra.

Here object= finite set $\{1, 2, \dots, n\}$ for some natural *n*.

 $S_p(n)$ = ways of partitioning $\{1, \dots, n\}$ into p + 2 (numbered) non-empty subsets. Face maps: taking union of adjacent pieces in partition. Consider category of finite sets and bijections. Give it a symmetric monoidal structure by disjoint union. Its classifying space

$$R = \bigsqcup_n BS_n$$

is an E_{∞} -algebra.

Here object= finite set $\{1, 2, \dots, n\}$ for some natural *n*.

 $S_p(n)$ = ways of partitioning $\{1, \dots, n\}$ into p + 2 (numbered) non-empty subsets. Face maps: taking union of adjacent pieces in partition.

Alternative viewpoint:

A partition $\{1, \dots, n\} = I_0 \sqcup \dots \sqcup I_{p+1}$ is the same data as the *flag* $I_0 < I_0 \sqcup I_1 < \dots \sqcup I_0 \sqcup \dots \sqcup I_p (<\{1, \dots, n\}).$

From the flags viewpoint, face maps forget an element in the flag. Thus, $S_{\bullet}(n)$ = simplicial complex with

```
Vertices= non empty proper subsets of \{1, \dots, n\}.
```

p-simplices: totally ordered sets of p + 1 vertices.

From the flags viewpoint, face maps forget an element in the flag. Thus, $S_{\bullet}(n)$ = simplicial complex with Vertices= non empty proper subsets of $\{1, \dots, n\}$. *p*-simplices: totally ordered sets of p + 1 vertices.

From the flags viewpoint, face maps forget an element in the flag. Thus, $S_{\bullet}(n)$ = simplicial complex with Vertices= non empty proper subsets of $\{1, \dots, n\}$. *p*-simplices: totally ordered sets of p + 1 vertices.

This is the barycentric subdivision of $\partial \Delta^{n-1}$.

Hence $S_{\bullet}(n) \cong S^{n-2}$ is (n-3)-connected.

Example II: configurations of points in the plane

Take X_n = unordered configurations of n points in the interior of l^2 $R = \bigsqcup_n X_n$ is an E_2 -algebra.

Example II: configurations of points in the plane

Take X_n = unordered configurations of n points in the interior of I^2

 $R = \bigsqcup_n X_n$ is an E_2 -algebra.

Object=configuration of *n* points for a given natural *n*.

Splitting complex of a configuration x of n points has

 $S_p(n)$ = collection of partitions

Face maps: glue adjacent pieces in partition= forget walls Fact: $S_{\bullet}(n)$ is (n - 3)-connected.

Example III: symplectic groups

Consider category of skew-symmetric non-degenerate bilinear forms over a "nice" ring (\mathbb{Z} or a field of characteristic \neq 2). Give it a symmetric monoidal structure by orthogonal direct sum. Its classifying space

$$R = \bigsqcup_{n} BSp_{2n}(R)$$

is an E_{∞} -algebra.

Consider category of skew-symmetric non-degenerate bilinear forms over a "nice" ring (\mathbb{Z} or a field of characteristic \neq 2). Give it a symmetric monoidal structure by orthogonal direct sum. Its classifying space

$$R = \bigsqcup_{n} BSp_{2n}(R)$$

is an E_{∞} -algebra.

Object= H^n for some natural number n.

 $S_p(n)$ = ways of partitioning H^n into p + 2 non-zero hyperbolics.

Face maps: taking orthogonal direct sum of two adjacent pieces in partition.

Consider category of skew-symmetric non-degenerate bilinear forms over a "nice" ring (\mathbb{Z} or a field of characteristic \neq 2). Give it a symmetric monoidal structure by orthogonal direct sum. Its classifying space

$$R = \bigsqcup_{n} BSp_{2n}(R)$$

is an E_{∞} -algebra.

Object= H^n for some natural number n.

 $S_p(n)$ = ways of partitioning H^n into p + 2 non-zero hyperbolics.

Face maps: taking orthogonal direct sum of two adjacent pieces in partition.

Thus, $S_{\bullet}(n)$ is the nerve of the poset of hyperbolic subspaces of H^n , i.e. the "Tits complex".

Fact (Looijenga–van der Kallen.): The Tits complex of H^n is (n-3)-connected.

Moduli spaces of manifolds

Fix a dimension N, usually $N \ge 3$.

Let $W_{g,1} := D^{2n} \# (S^n \times S^n)^{\#^g}$.

Let X_g = collection of submanifolds of $I^{2N} \times \mathbb{R}^{\infty}$ which are diffeomorphic to $W_{g,1}$ and look standard near their boundary.

Moduli spaces of manifolds

Fix a dimension N, usually $N \ge 3$.

Let $W_{g,1} := D^{2n} \# (S^n \times S^n)^{\#^g}$.

Let X_g = collection of submanifolds of $I^{2N} \times \mathbb{R}^{\infty}$ which are diffeomorphic to $W_{g,1}$ and look standard near their boundary.

 $R := \bigsqcup_g X_g$ is an E_{2N} -algebra:

Here object= submanifold $W \subset I^{2N} \times \mathbb{R}^{\infty}$ diffeomorphic to $W_{g,1}$ and standard near the boundary.

Thus, $S_p(g)$ = ways of cutting a given $W \in X_g$ into p + 2 objects of positive grading = space of p + 1 "walls" in the manifold W.

 $S_{\bullet}(g)$ is the nerve of the (topological) poset of walls.

Theorem (S. 2022) The splitting complex $S_{\bullet}(g)$ is (g - 3)-connected for $N \ge 3$ odd.

Theorem (S. 2022) The splitting complex $S_{\bullet}(g)$ is (g - 3)-connected for $N \ge 3$ odd.

Application:

Theorem (S.2022) Let $N \ge 3$ be odd, then the stabilization maps

$$H_d(BDiff_\partial(W_{g-1,1}); \Bbbk) \longrightarrow H_d(BDiff_\partial(W_{g,1}); \Bbbk)$$

are isomorphisms for

(i)
$$k = \mathbb{Z}$$
 and $d \le \frac{2g-4}{3}$ if $N = 3, 7$.
(ii) $k = \mathbb{Z}[\frac{1}{2}]$ and $d \le \frac{2g-7}{3}$ if $N \ne 3, 7$.
(iii) $k = \mathbb{Q}$ and $d \le \frac{2N-4}{2N-3}(g-2-\frac{2}{2N-4})$.

First Step: reduce to showing that the levelwise discretization $S^{\delta}_{\bullet}(g)$ has the same connectivity bound.

This step works quite generally, based on microfibrations.

First Step: reduce to showing that the levelwise discretization $S^{\delta}_{\bullet}(g)$ has the same connectivity bound.

This step works quite generally, based on microfibrations.

Second Step: covering the splitting complex and using a nerve theorem.

This step is a common trick employed in the literature when dealing with splitting complexes.

Key here: find an appropriate cover indexed by an easier poset.

For us the poset indexing cover is a generalization of the complex of non-separating arcs on a surface.

Third step: need to show high connectivity of the "arc complex". Key idea: use homology to find an "algebraic model" of the complex. By transversality and Whitney trick (hence $N \ge 3$) the high connectivity of the algebraic complex implies the one of the arc complex. Third step: need to show high connectivity of the "arc complex".

Key idea: use homology to find an "algebraic model" of the complex.

By transversality and Whitney trick (hence $N \ge 3$) the high connectivity of the algebraic complex implies the one of the arc complex.

Final step: understanding the algebraic complex.

It is related to the complex of unimodular sequences, but impose an extra condition on their elements.