Splitting Complexes

Ismael Sierra
University of Cambridge

Homological Stability

General Set-up

$X_{0} \xrightarrow{s} X_{1} \xrightarrow{s} X_{2} \xrightarrow{s} \cdots$: sequence of spaces with maps between them. Maps s are called "stabilization maps"

Question: Can we find a divergent function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $s_{*}: H_{d}\left(X_{n-1}\right) \rightarrow H_{d}\left(X_{n}\right)$ is an isomorphism for $d<f(n)$?

If so we say the family has homological stability
In practice: $f(n)=\lambda n+c, \lambda=$ slope of the stability.

Homological Stability

General Set-up

$X_{0} \xrightarrow{s} X_{1} \xrightarrow{s} X_{2} \xrightarrow{s} \cdots$: sequence of spaces with maps between them. Maps s are called "stabilization maps"

Question: Can we find a divergent function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $s_{*}: H_{d}\left(X_{n-1}\right) \rightarrow H_{d}\left(X_{n}\right)$ is an isomorphism for $d<f(n)$?

If so we say the family has homological stability
In practice: $f(n)=\lambda n+c, \lambda=$ slope of the stability.
Classical approach
Studies case $X_{n}=B G_{n}, G_{n}$ groups such that $\bigsqcup_{n} G_{n}$ is braided monoidal.

Based on studying connectivity of "destabilization complexes".

Homological Stability via E_{k}-algebras

Recall: $E_{k}=$ little k-discs operad.

$$
\left.\begin{array}{|cc|}
\hline & 2 \\
\hline 1 & 13
\end{array}\right] \in E_{2}(3)
$$

Homological Stability via E_{k}-algebras

Recall: $E_{k}=$ little k-discs operad.

$$
\left.\begin{array}{|cc|}
\hline & 2 \\
\hline 1 & 13
\end{array}\right] \in E_{2}(3)
$$

New set-up

Assume $R:=\bigsqcup_{n} X_{n} \in \operatorname{Top}^{\mathbb{N}}$ is a (graded) E_{k}-algebra.
Stabilization maps s induced by the E_{k}-product.
Example: In the classical set-up $R=\bigsqcup_{n} B G_{n}$ is a graded E_{2}-algebra.

Homological Stability via E_{k}-algebras

Recall: $E_{k}=$ little k-discs operad.

$$
\left.\begin{array}{|cc|}
\hline & 2 \\
1 & 13
\end{array} \right\rvert\, \in E_{2}(3)
$$

New set-up

Assume $R:=\bigsqcup_{n} X_{n} \in \operatorname{Top}^{\mathbb{N}}$ is a (graded) E_{k}-algebra.
Stabilization maps s induced by the E_{k}-product.
Example: In the classical set-up $R=\bigsqcup_{n} B G_{n}$ is a graded E_{2}-algebra.
Cellular E_{k}-algebras approach (Galatius-Kupers-Randal-Williams)
Idea: Use the full E_{k}-structure to prove (better) homological stability results.

The cellular E_{k}-algebras machine

Notion of "cell attachment" in the category of graded E_{k}-algebras.
Thus get notion of cellular E_{k}-algebras.
There is a cellular approximation theorem.
Cells are bigraded: $D^{n, d}=d$-cell in grading n. The slope of a cell is d / n.

The cellular E_{k}-algebras machine

Notion of "cell attachment" in the category of graded E_{k}-algebras.
Thus get notion of cellular E_{k}-algebras.
There is a cellular approximation theorem.
Cells are bigraded: $D^{n, d}=d$-cell in grading n. The slope of a cell is d / n.

Key:
"If all the cells have high slope then we get good homological stability"

The cellular E_{k}-algebras machine

Notion of "cell attachment" in the category of graded E_{k}-algebras.
Thus get notion of cellular E_{k}-algebras.
There is a cellular approximation theorem.
Cells are bigraded: $D^{n, d}=d$-cell in grading n. The slope of a cell is d / n.

Key:
"If all the cells have high slope then we get good homological stability"

Main input: a lower bound for the slope of all cells.

Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build R cellularly.

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part, but also very explicit!

Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build R cellularly.

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part, but also very explicit!
Given "object" x, its splitting complex, $S_{\mathbf{0}}(x)$ is a semisimplicial space with

1. p-simplices: ways of decomposing x into $p+2$ objects of positive grading.
2. Face maps: d_{i} glues ith and $(i+1)$ th objects.

Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build R cellularly.

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part, but also very explicit!
Given "object" x, its splitting complex, $S_{\mathbf{0}}(x)$ is a semisimplicial space with

1. p-simplices: ways of decomposing x into $p+2$ objects of positive grading.
2. Face maps: d_{i} glues ith and $(i+1)$ th objects.

Goal: Estimate the connectivity of $S_{\bullet}(x)$ in terms of the grading of x. Usually: If x is in grading x then $S_{\bullet}(x)$ is ($\left.n-3\right)$-connected.

Example I: symmetric groups

Consider category of finite sets and bijections. Give it a symmetric monoidal structure by disjoint union. Its classifying space

$$
R=\bigsqcup_{n} B S_{n}
$$

is an E_{∞}-algebra.

Example I: symmetric groups

Consider category of finite sets and bijections. Give it a symmetric monoidal structure by disjoint union. Its classifying space

$$
R=\bigsqcup_{n} B S_{n}
$$

is an E_{∞}-algebra.
Here object= finite set $\{1,2, \cdots, n\}$ for some natural n.
$S_{p}(n)=$ ways of partitioning $\{1, \cdots, n\}$ into $p+2$ (numbered) non-empty subsets. Face maps: taking union of adjacent pieces in partition.

Example l: symmetric groups

Consider category of finite sets and bijections. Give it a symmetric monoidal structure by disjoint union. Its classifying space

$$
R=\bigsqcup_{n} B S_{n}
$$

is an E_{∞}-algebra.
Here object= finite set $\{1,2, \cdots, n\}$ for some natural n.
$S_{p}(n)=$ ways of partitioning $\{1, \cdots, n\}$ into $p+2$ (numbered) non-empty subsets. Face maps: taking union of adjacent pieces in partition.
Alternative viewpoint:
A partition $\{1, \cdots, n\}=I_{0} \sqcup \cdots \sqcup I_{p+1}$ is the same data as the flag $I_{0}<I_{0} \sqcup I_{1}<\cdots I_{0} \sqcup \cdots \sqcup I_{p}(<\{1, \cdots, n\})$.

From the flags viewpoint, face maps forget an element in the flag.
Thus, $S_{\bullet}(n)=$ simplicial complex with
Vertices= non empty proper subsets of $\{1, \cdots, n\}$. p-simplices: totally ordered sets of $p+1$ vertices.

From the flags viewpoint, face maps forget an element in the flag.
Thus, $S_{\bullet}(n)=$ simplicial complex with
Vertices= non empty proper subsets of $\{1, \cdots, n\}$. p-simplices: totally ordered sets of $p+1$ vertices.

From the flags viewpoint, face maps forget an element in the flag.
Thus, $S_{\bullet}(n)=$ simplicial complex with
Vertices= non empty proper subsets of $\{1, \cdots, n\}$. p-simplices: totally ordered sets of $p+1$ vertices.

This is the barycentric subdivision of $\partial \Delta^{n-1}$.
Hence $S_{\bullet}(n) \cong S^{n-2}$ is $(n-3)$-connected.

Example II: configurations of points in the plane

Take $X_{n}=$ unordered configurations of n points in the interior of I^{2} $R=\bigsqcup_{n} X_{n}$ is an E_{2}-algebra.

Example II: configurations of points in the plane

Take $X_{n}=$ unordered configurations of n points in the interior of I^{2}
$R=\bigsqcup_{n} X_{n}$ is an E_{2}-algebra.
Object=configuration of n points for a given natural n.
Splitting complex of a configuration x of n points has
$S_{p}(n)=$ collection of partitions

Face maps: glue adjacent pieces in partition= forget walls
Fact: $S_{\bullet}(n)$ is $(n-3)$-connected.

Example III: symplectic groups

Consider category of skew-symmetric non-degenerate bilinear forms over a "nice" ring (\mathbb{Z} or a field of characteristic $\neq 2$). Give it a symmetric monoidal structure by orthogonal direct sum. Its classifying space

$$
R=\bigsqcup_{n} B S p_{2 n}(R)
$$

is an E_{∞}-algebra.

Example III: symplectic groups

Consider category of skew-symmetric non-degenerate bilinear forms over a "nice" ring (\mathbb{Z} or a field of characteristic $\neq 2$). Give it a symmetric monoidal structure by orthogonal direct sum. Its classifying space

$$
R=\bigsqcup_{n} B S p_{2 n}(R)
$$

is an E_{∞}-algebra.
Object $=H^{n}$ for some natural number n.
$S_{p}(n)=$ ways of partitioning H^{n} into $p+2$ non-zero hyperbolics.
Face maps: taking orthogonal direct sum of two adjacent pieces in partition.

Example III: symplectic groups

Consider category of skew-symmetric non-degenerate bilinear forms over a "nice" ring (\mathbb{Z} or a field of characteristic $\neq 2$). Give it a symmetric monoidal structure by orthogonal direct sum. Its classifying space

$$
R=\bigsqcup_{n} B S p_{2 n}(R)
$$

is an E_{∞}-algebra.
Object $=H^{n}$ for some natural number n.
$S_{p}(n)=$ ways of partitioning H^{n} into $p+2$ non-zero hyperbolics.
Face maps: taking orthogonal direct sum of two adjacent pieces in partition.

Thus, $S_{\bullet}(n)$ is the nerve of the poset of hyperbolic subspaces of H^{n}, i.e. the "Tits complex".

Fact (Looijenga-van der Kallen.): The Tits complex of H^{n} is ($n-3$)-connected.

Moduli spaces of manifolds

Fix a dimension N, usually $N \geq 3$.
Let $W_{g, 1}:=D^{2 n} \#\left(S^{n} \times S^{n}\right)^{\#^{9}}$.
Let $X_{g}=$ collection of submanifolds of $I^{2 N} \times \mathbb{R}^{\infty}$ which are diffeomorphic to $W_{g, 1}$ and look standard near their boundary.

Moduli spaces of manifolds

Fix a dimension N, usually $N \geq 3$.
Let $W_{g, 1}:=D^{2 n} \#\left(S^{n} \times S^{n}\right)^{\#^{9}}$.
Let $X_{g}=$ collection of submanifolds of $I^{2 N} \times \mathbb{R}^{\infty}$ which are diffeomorphic to $W_{g, 1}$ and look standard near their boundary. $R:=\bigsqcup_{g} X_{g}$ is an $E_{2 N}$-algebra:

The splitting complex of the moduli spaces of manifolds

Here object= submanifold $W \subset I^{2 N} \times \mathbb{R}^{\infty}$ diffeomorphic to $W_{g, 1}$ and standard near the boundary.

Thus, $S_{p}(g)=$ ways of cutting a given $W \in X_{g}$ into $p+2$ objects of positive grading = space of $p+1$ "walls" in the manifold W.

S. (g) is the nerve of the (topological) poset of walls.

Main theorem

Theorem (S. 2022)
The splitting complex $S_{\bullet}(g)$ is $(g-3)$-connected for $N \geq 3$ odd.

Main theorem

Theorem (S. 2022)
The splitting complex $S_{\bullet}(g)$ is $(g-3)$-connected for $N \geq 3$ odd.

Application:
Theorem (S.2022) Let $N \geq 3$ be odd, then the stabilization maps

$$
H_{d}\left(\text { BDiff }_{\partial}\left(W_{g-1,1}\right) ; \mathbb{k}\right) \longrightarrow H_{d}\left(\text { BDiff }_{\partial}\left(W_{g, 1}\right) ; \mathbb{k}\right)
$$

are isomorphisms for
(i) $\mathbb{k}=\mathbb{Z}$ and $d \leq \frac{2 g-4}{3}$ if $N=3,7$.
(ii) $\mathbb{k}=\mathbb{Z}\left[\frac{1}{2}\right]$ and $d \leq \frac{2 g-7}{3}$ if $N \neq 3,7$.
(iii) $\mathfrak{k}=\mathbb{Q}$ and $d \leq \frac{2 N-4}{2 N-3}\left(g-2-\frac{2}{2 N-4}\right)$.

Proving the main theorem I

First Step: reduce to showing that the levelwise discretization $S_{.}^{\delta}(g)$ has the same connectivity bound.

This step works quite generally, based on microfibrations.

Proving the main theorem I

First Step: reduce to showing that the levelwise discretization $S_{.}^{\delta}(g)$ has the same connectivity bound.

This step works quite generally, based on microfibrations.
Second Step: covering the splitting complex and using a nerve theorem.

This step is a common trick employed in the literature when dealing with splitting complexes.
Key here: find an appropriate cover indexed by an easier poset.
For us the poset indexing cover is a generalization of the complex of non-separating arcs on a surface.

Proving the main theorem II

Third step: need to show high connectivity of the "arc complex".
Key idea: use homology to find an "algebraic model" of the complex.
By transversality and Whitney trick (hence $N \geq 3$) the high connectivity of the algebraic complex implies the one of the arc complex.

Proving the main theorem II

Third step: need to show high connectivity of the "arc complex".
Key idea: use homology to find an "algebraic model" of the complex.
By transversality and Whitney trick (hence $N \geq 3$) the high connectivity of the algebraic complex implies the one of the arc complex.

Final step: understanding the algebraic complex.
It is related to the complex of unimodular sequences, but impose an extra condition on their elements.

