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Homological Stability

General Set-up

Xo 2> X1 > Xo = ---: sequence of spaces with maps between them.
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If so we say the family has homological stability

In practice: f(n) = An + ¢, A= slope of the stability.
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General Set-up

Xo 2> X1 > Xo = ---: sequence of spaces with maps between them.
Maps s are called “stabilization maps”

Question: Can we find a divergent function f : N — N such that
S, : Hy(Xn_1) — Hq(Xy) is an isomorphism for d < f(n)?

If so we say the family has homological stability
In practice: f(n) = An + ¢, A= slope of the stability.
Classical approach

Studies case X, = BGp, G, groups such that | |, G, is braided
monoidal.

Based on studying connectivity of “destabilization complexes”.
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Recall: Eg= little k-discs operad.
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New set-up

Assume R := | |, X, € Top" is a (graded) Ej-algebra.

Stabilization maps s induced by the E,-product.

Example: In the classical set-up R = | |, BG, is a graded E,-algebra.
Cellular E,-algebras approach (Galatius-Kupers-Randal-Williams)

Idea: Use the full E,-structure to prove (better) homological
stability results.
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The cellular E,-algebras machine

Notion of “cell attachment” in the category of graded E,-algebras.
Thus get notion of cellular Ex-algebras.
There is a cellular approximation theorem.

Cells are bigraded: D"-9= d-cell in grading n. The slope of a cell is
d/n.

Key:

“If all the cells have high slope then we get good homological
stability”

Main input: a lower bound for the slope of all cells.
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Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build R
cellularly.

Comes down to the high-connectivity of certain “splitting
complexes”.

Usually the technically most challenging part, but also very explicit!
Given “object” x, its splitting complex, S,(x) is a semisimplicial

space with

1. p-simplices: ways of decomposing x into p + 2 objects of
positive grading.
2. Face maps: d; glues ith and (i + 1)th objects.

Goal: Estimate the connectivity of S¢(x) in terms of the grading of x.

Usually: If x is in grading x then S.(x) is (n — 3)-connected.
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Example I: symmetric groups

Consider category of finite sets and bijections. Give it a symmetric
monoidal structure by disjoint union. Its classifying space

R:|_|BS,,
n

is an E..-algebra.
Here object= finite set {1,2,--- ,n} for some natural n.

Sp(n)= ways of partitioning {1,--- ,n} into p + 2 (numbered)
non-empty subsets. Face maps: taking union of adjacent pieces in
partition.

Alternative viewpoint:

A partition {1,--- ,n} = I, U---Ulpy, is the same data as the flag
lo <loUlh < - loU---Ulp(< {1,---,n}).
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Vertices= non empty proper subsets of {1,--- ,n}.

p-simplices: totally ordered sets of p + 1 vertices.
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From the flags viewpoint, face maps forget an element in the flag.
Thus, S¢(n)= simplicial complex with
Vertices= non empty proper subsets of {1,--- ,n}.

p-simplices: totally ordered sets of p + 1 vertices.
{3}
1, 2
{1.3} g 33}}
{1} {1,2} {2}

This is the barycentric subdivision of A" .

Hence S.(n) = S"2is (n — 3)-connected.
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Example II: configurations of points in the plane

Take X,= unordered configurations of n points in the interior of I?
R =, Xn is an E,-algebra.

Object=configuration of n points for a given natural n.

Splitting complex of a configuration x of n points has

Sp(n)= collection of partitions

Face maps: glue adjacent pieces in partition= forget walls

Fact: S,(n) is (n — 3)-connected.
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Example IlI: symplectic groups

Consider category of skew-symmetric non-degenerate bilinear
forms over a “nice” ring (Z or a field of characteristic # 2). Give it a
symmetric monoidal structure by orthogonal direct sum. Its
classifying space
R= |_| BSp2n(R)
n

is an E..-algebra.
Object= H" for some natural number n.
Sp(n)= ways of partitioning H" into p + 2 non-zero hyperbolics.

Face maps: taking orthogonal direct sum of two adjacent pieces in
partition.

Thus, S¢(n) is the nerve of the poset of hyperbolic subspaces of H",
i.e. the “Tits complex”.

Fact (Looijenga-van der Kallen.): The Tits complex of H" is
(n — 3)-connected. 8
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diffeomorphic to Wy, and look standard near their boundary.



Moduli spaces of manifolds

Fix a dimension N, usually N > 3.

Let Wy, := D2"#(S" x SM)#’.

Let Xy = collection of submanifolds of I?N x R> which are
diffeomorphic to Wy, and look standard near their boundary.

RE= |_|ng is an E;y-algebra:
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The splitting complex of the moduli spaces of manifolds

Here object= submanifold W c PN x R> diffeomorphic to Wy, and
standard near the boundary.

Thus, Sp(g)= ways of cutting a given W € Xg into p + 2 objects of
positive grading = space of p + 1 “walls” in the manifold W.

/ﬁ it

S.(g) is the nerve of the (topological) poset of walls.
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Theorem (S. 2022)
The splitting complex S.(g) is (g — 3)-connected for N > 3 odd.
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Theorem (S. 2022)
The splitting complex S.(g) is (g — 3)-connected for N > 3 odd.

Application:

Theorem (S.2022) Let N > 3 be odd, then the stabilization maps
Hd(BDiﬁB(Wg—1,1); Ik) — Hd(BDiﬂ:a(WgJ); ]k)

are isomorphisms for

() k=Zandd < 24 if N = 3,7.
(i) k = Z[3] andd§2937‘7ifN7é3,7.

(iii) k=Qandd < ;%:g(g 9 2N2—4)'

1"



Proving the main theorem |

First Step: reduce to showing that the levelwise discretization S(g)
has the same connectivity bound.

This step works quite generally, based on microfibrations.
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Proving the main theorem |

First Step: reduce to showing that the levelwise discretization S(g)
has the same connectivity bound.

This step works quite generally, based on microfibrations.

Second Step: covering the splitting complex and using a nerve
theorem.

This step is a common trick employed in the literature when dealing
with splitting complexes.

Key here: find an appropriate cover indexed by an easier poset.

For us the poset indexing cover is a generalization of the complex of
non-separating arcs on a surface.
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Proving the main theorem Il

Third step: need to show high connectivity of the “arc complex”.
Key idea: use homology to find an “algebraic model” of the complex.

By transversality and Whitney trick (hence N > 3) the high
connectivity of the algebraic complex implies the one of the arc
complex.
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Proving the main theorem Il

Third step: need to show high connectivity of the “arc complex”.
Key idea: use homology to find an “algebraic model” of the complex.

By transversality and Whitney trick (hence N > 3) the high
connectivity of the algebraic complex implies the one of the arc
complex.

Final step: understanding the algebraic complex.

It is related to the complex of unimodular sequences, but impose an
extra condition on their elements.

13



