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Homological Stability

General Set-up

X0
s−→ X1

s−→ X2
s−→ · · · : sequence of spaces with maps between them.

Maps s are called “stabilization maps”

Question: Can we find a divergent function f : N → N such that
s∗ : Hd(Xn−1) → Hd(Xn) is an isomorphism for d < f (n)?

If so we say the family has homological stability

In practice: f (n) = λn + c, λ= slope of the stability.

Classical approach

Studies case Xn = BGn, Gn groups such that
⊔

n Gn is braided
monoidal.

Based on studying connectivity of “destabilization complexes”.
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Homological Stability via Ek-algebras

Recall: Ek= little k-discs operad.

1
2
3

∈ E2(3)

New set-up

Assume R :=
⊔

n Xn ∈ TopN is a (graded) Ek-algebra.

Stabilization maps s induced by the Ek-product.

Example: In the classical set-up R =
⊔

n BGn is a graded E2-algebra.

Cellular Ek-algebras approach (Galatius–Kupers–Randal-Williams)

Idea: Use the full Ek-structure to prove (better) homological
stability results.
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The cellular Ek-algebras machine

Notion of “cell attachment” in the category of graded Ek-algebras.

Thus get notion of cellular Ek-algebras.

There is a cellular approximation theorem.

Cells are bigraded: Dn,d= d-cell in grading n. The slope of a cell is
d/n.

Key:

“If all the cells have high slope then we get good homological
stability”

Main input: a lower bound for the slope of all cells.
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Splitting complexes and a priory bounds on cells

Goal: To show that no cells of small slope are needed to build R
cellularly.

Comes down to the high-connectivity of certain “splitting
complexes”.

Usually the technically most challenging part, but also very explicit!

Given “object” x, its splitting complex, S•(x) is a semisimplicial
space with

1. p-simplices: ways of decomposing x into p + 2 objects of
positive grading.

2. Face maps: di glues ith and (i + 1)th objects.

Goal: Estimate the connectivity of S•(x) in terms of the grading of x.

Usually: If x is in grading x then S•(x) is (n − 3)-connected.
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Example I: symmetric groups

Consider category of finite sets and bijections. Give it a symmetric
monoidal structure by disjoint union. Its classifying space

R =
⊔
n

BSn

is an E∞-algebra.

Here object= finite set {1, 2, · · · ,n} for some natural n.

Sp(n)= ways of partitioning {1, · · · ,n} into p + 2 (numbered)
non-empty subsets. Face maps: taking union of adjacent pieces in
partition.

Alternative viewpoint:

A partition {1, · · · ,n} = I0 ⊔ · · · ⊔ Ip+1 is the same data as the flag
I0 < I0 ⊔ I1 < · · · I0 ⊔ · · · ⊔ Ip(< {1, · · · ,n}).
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From the flags viewpoint, face maps forget an element in the flag.

Thus, S•(n)= simplicial complex with

Vertices= non empty proper subsets of {1, · · · ,n}.

p-simplices: totally ordered sets of p + 1 vertices.

{1} {2}

{3}

{1, 2}

{2, 3}{1, 3}
{1, 2, 3}

• •

•

••

•
•

This is the barycentric subdivision of ∂∆n−1.

Hence S•(n) ∼= Sn−2 is (n − 3)-connected.
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Example II: configurations of points in the plane

Take Xn= unordered configurations of n points in the interior of I2

R =
⊔

n Xn is an E2-algebra.

Object=configuration of n points for a given natural n.

Splitting complex of a configuration x of n points has

Sp(n)= collection of partitions

•
•

•

•
•

Face maps: glue adjacent pieces in partition= forget walls

Fact: S•(n) is (n − 3)-connected.
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Example III: symplectic groups

Consider category of skew-symmetric non-degenerate bilinear
forms over a “nice” ring (Z or a field of characteristic ̸= 2). Give it a
symmetric monoidal structure by orthogonal direct sum. Its
classifying space

R =
⊔
n

BSp2n(R)

is an E∞-algebra.

Object= Hn for some natural number n.

Sp(n)= ways of partitioning Hn into p + 2 non-zero hyperbolics.

Face maps: taking orthogonal direct sum of two adjacent pieces in
partition.

Thus, S•(n) is the nerve of the poset of hyperbolic subspaces of Hn,
i.e. the “Tits complex”.

Fact (Looijenga–van der Kallen.): The Tits complex of Hn is
(n − 3)-connected.
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Moduli spaces of manifolds

Fix a dimension N, usually N ≥ 3.

Let Wg,1 := D2n#(Sn × Sn)#
g .

Let Xg = collection of submanifolds of I2N × R∞ which are
diffeomorphic to Wg,1 and look standard near their boundary.

R :=
⊔

g Xg is an E2N-algebra:

1
2
3

E2(3)× R(3)× R(2)× R(1)

∈

∈ R(6)
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The splitting complex of the moduli spaces of manifolds

Here object= submanifold W ⊂ I2N × R∞ diffeomorphic to Wg,1 and
standard near the boundary.

Thus, Sp(g)= ways of cutting a given W ∈ Xg into p + 2 objects of
positive grading = space of p + 1 “walls” in the manifold W.

S•(g) is the nerve of the (topological) poset of walls.
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Main theorem

Theorem (S. 2022)
The splitting complex S•(g) is (g − 3)-connected for N ≥ 3 odd.

Application:

Theorem (S.2022) Let N ≥ 3 be odd, then the stabilization maps

Hd(BDiff∂(Wg−1,1);k) −→ Hd(BDiff∂(Wg,1);k)

are isomorphisms for

(i) k = Z and d ≤ 2g−4
3 if N = 3, 7.

(ii) k = Z[ 1
2 ] and d ≤ 2g−7

3 if N ̸= 3, 7.
(iii) k = Q and d ≤ 2N−4

2N−3 (g − 2 − 2
2N−4 ).
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Proving the main theorem I

First Step: reduce to showing that the levelwise discretization Sδ
•(g)

has the same connectivity bound.

This step works quite generally, based on microfibrations.

Second Step: covering the splitting complex and using a nerve
theorem.

This step is a common trick employed in the literature when dealing
with splitting complexes.

Key here: find an appropriate cover indexed by an easier poset.

For us the poset indexing cover is a generalization of the complex of
non-separating arcs on a surface.
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Proving the main theorem II

Third step: need to show high connectivity of the “arc complex”.

Key idea: use homology to find an “algebraic model” of the complex.

By transversality and Whitney trick (hence N ≥ 3) the high
connectivity of the algebraic complex implies the one of the arc
complex.

Final step: understanding the algebraic complex.

It is related to the complex of unimodular sequences, but impose an
extra condition on their elements.

13



Proving the main theorem II

Third step: need to show high connectivity of the “arc complex”.

Key idea: use homology to find an “algebraic model” of the complex.

By transversality and Whitney trick (hence N ≥ 3) the high
connectivity of the algebraic complex implies the one of the arc
complex.

Final step: understanding the algebraic complex.

It is related to the complex of unimodular sequences, but impose an
extra condition on their elements.

13


