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Homology of diffeomorphism groups

W = manifold with boundary
Diff5(W) = diffeomorphisms of W fixing (pointwise) its boundary

BDiff5(W) = classifying space of Diffy (W)

This classifies smooth fibre bundles with fibre W which are
trivialized over oW

H*(BDiff5(W)) = characteristic classes of such bundles

Convenient to discuss H..(BDiffy(W)) instead.



Generalized surfaces

Focus our attention on a particular class of manifolds
WZ", := D*"#(S" x S")#9

Wy, = boundary connected sum of g copies of W, ,
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Homological stability of diffeomorphism groups

Have inclusions Wy_, 4 C Wy 4

A

which give stabilization maps

Diﬁ:a(Wg*‘l,'l) — Di'ﬁ:Q(WgJ)

Questions:
e Are these homology isomorphisms in a range of degrees?

e What is the stable homology? i.e. what is colimg Hy(BDiff5(Wg,1))?



What was known I: High dimensions

Letn >3

e Homological stability for the family {Diff5(Wg 1)}¢>+: The
stabilization maps

Hd(BDiﬁ:a(Wg,-I_j)) — Hd(BDiﬂ:g)(Wgﬂ))

are isomorphisms for d < 2>* (Galatius-Randal-Williams 2012)

e The value of
colim Hy(BDiff5 (W, 1); Q)

is known (Galatius-Randal-Williams 2014).



What was known II: Surfaces

For n = 1 (surfaces)
Diﬂ:a(WgJ) E—> 7'l'o(Diﬂ:(’?(v‘/g.ﬂ)) = rgﬂ

so one can study mapping class groups instead.
e Homological stability (of slope 1/3) for {Ig1}4>1 (Harer 1985).

e The stable (co)homology is known:
IISI;T’I H*(Brg,ﬂ Q) = Q[K/h K2, Rz, ]

(Madsen-Weiss 2007)



What was known llI: Further results on surfaces

e Improvements on the stability ranges for the n = 1 case (lvanov,
Boldsen, Randal-Williams): Best slope found was 2/3.

e Using E,-algebras the following results were shown:

(i) The stabilization maps
Hd(Brg_1_’1) — Hd(Brg/'l)

are surjective for d < 29 2 and isomorphisms for d < 294

(ii) Some additional mformatlon: "Secondary stability” (whlch
implies that 2/3 slope is optimal).

(Galatius-Kupers-Randal Williams 2019)



What was known IV: Different approach to high dimensions

Theorem (Krannich 2019): Let n > 3, then the stabilization maps
Hd(BDiﬁ:a(Wg,H); Q) — Hd(BDiﬂ:a(Wgﬂ); Q)

are isomorphisms for d < min{g — 3 + ¢,2n — 5}, where c = o for n
even and ¢ = 1 for n odd.

Deduced from work of Berglund-Madsen (2012) on homological
stability of "variations” {BDiff5(Wg1)}4 and {BAuts(Wg)}4 of
{BDiff5(Wg,1) }q-



Use E-algebras techniques to improve the ranges for n > 3.

e By Krannich expect a range of the formd < g — 3 + ¢ (with Q
coefficients).

e Improvements on the stability range lead to the computation of
new homology groups (and hence of characteristic classes).

e The improvements one can get from E,-algebras techniques are of
exploratory nature (better slopes, secondary phenomena etc).



The results




Statements (work in progress)

Theorem (in progress): Let n > 3, then the stabilization maps
Hq(BDiff5(Wg—_1.1); k) — Hg(BDiffo(Wy 1); k)
are isomorphisms for
() k=Zandd < 297’6 if n is even.
(i) k=Zand d < 2= ifn=3,7.

(iii) k = Z[}] and d < 22T if nis odd, n # 3,7.
(iv) k=Qand d < 2=%(g — 2 — 5;%;) if nis odd. (This approaches
Krannich’s line when n — o)




The proof




Getting an E,,-algebra

First step: view

R:= |_| BDIff5(Wg 1)
g>1

as an (N-graded) E,,-algebra, so that stabilization maps arise from
this E,,-structure.

Point set model

R(g) := BDiff5(Wg 1) = space of submanifolds W C " x R
diffeomorphic to Wy ; and which look standard near the boundary
OW = 9P x {0}

ﬁﬁ W € R(3)

10



The E,,-algebra structure on R

C2(3) x R(3) x R(2) x R(1)

T =
2l | 5
@@ € R(6)

Technical remark: In the actual proof one considers a more
convenient E,,_,-algebra related to the above.
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Cellular E.-algebras

Notion of "cell attachment” in the category of Ex-algebras: given an
Er-algebra S (in N-graded spaces) and a map ¢ : 9D — S(g) one
can attach a bidegree (g, d) Ex-cell Ex(D99) to get a new Ej-algebra
S UEk E(D9).

Cellular Ex-algebras= those constructed by a sequence of cell
attachments starting from @.

Cellular approximation theorem: If R(0) = & then there is a cellular
Er-algebra A with a weak equivalence A =5 R.

Using the work of F.Cohen, the homology of cellular Ex-algebras is
accessible.
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Finding a (minimal) cellular approximation to R (l)

This is the second step in the proof and has two parts:

(i) Proving an a priori vanishing result: Show that there is a
cellular approximation having no (g, d)-cells with d < g — 1.

d d=g-—-1

g

(ii) Understanding a (minimal) cell structure for small values of
(9, d).

"Adding cells of slope d/g > )\ does not destroy homological
stability of slope < \”
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Finding a cellular approximation to R (i)

Vanishing result:

Comes down to the high-connectivity of certain "splitting
complexes”.

Usually the technically most challenging part.

Cell structure for small degrees and genus:

Strategy is to access it by computing Hq(BDiff5(Wg.1)) for small (g, d).
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Cell computation integrally

Using the analysis of mapping class groups by Kreck (1979) we can
access the cellular approximation up to degree 1.

neven:

d=g—1

n odd:

15



Cell computation rationally for n odd

Using result by Krannich one shows that only 3 cells are needed on
the critical line for d < 2n — 5, so smallest slope of additional cells

H 2N—4
152 =

d=g-—1
2n-4

g

2n-3

Then one checks that the algebra consisting of just those 3 cells has
rational stability of slope 1.
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