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Homology of di�eomorphism groups

W = manifold with boundary

Di�∂(W) = di�eomorphisms of W fixing (pointwise) its boundary

BDi�∂(W) = classifying space of Di�∂(W)

This classifies smooth fibre bundles with fibre W which are
trivialized over ∂W

H∗(BDi�∂(W)) = characteristic classes of such bundles

Convenient to discuss H∗(BDi�∂(W)) instead.
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Generalized surfaces

Focus our attention on a particular class of manifolds

W2n
g,1 := D2n#(Sn × Sn)#g

Wg,1 = boundary connected sum of g copies of W1,1
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Homological stability of di�eomorphism groups

Have inclusions Wg−1,1 ⊂ Wg,1

which give stabilization maps

Di�∂(Wg−1,1) −→ Di�∂(Wg,1)

Questions:

• Are these homology isomorphisms in a range of degrees?

• What is the stable homology? i.e. what is colimg Hd(BDi�∂(Wg,1))?
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What was known I: High dimensions

Let n ≥ 3

• Homological stability for the family {Di�∂(Wg,1)}g≥1: The
stabilization maps

Hd(BDi�∂(Wg−1,1)) −→ Hd(BDi�∂(Wg,1))

are isomorphisms for d ≤ g−4
2 (Galatius–Randal-Williams 2012)

• The value of
colim
g

Hd(BDi�∂(Wg,1);Q)

is known (Galatius–Randal-Williams 2014).
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What was known II: Surfaces

For n = 1 (surfaces)

Di�∂(Wg,1)
'−→ π0(Di�∂(Wg,1)) =: Γg,1

so one can study mapping class groups instead.

• Homological stability (of slope 1/3) for {Γg,1}g≥1 (Harer 1985).

• The stable (co)homology is known:

lim
g
H∗(BΓg,1;Q) = Q[κ1, κ2, κ3, · · · ]

(Madsen–Weiss 2007)
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What was known III: Further results on surfaces

• Improvements on the stability ranges for the n = 1 case (Ivanov,
Boldsen, Randal-Williams): Best slope found was 2/3.

• Using Ek-algebras the following results were shown:

(i) The stabilization maps

Hd(BΓg−1,1) −→ Hd(BΓg,1)

are surjective for d ≤ 2g−2
3 and isomorphisms for d ≤ 2g−4

3

(ii) Some additional information: ”Secondary stability” (which
implies that 2/3 slope is optimal).

(Galatius–Kupers–Randal Williams 2019)
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What was known IV: Di�erent approach to high dimensions

Theorem (Krannich 2019): Let n ≥ 3, then the stabilization maps

Hd(BDi�∂(Wg−1,1);Q) −→ Hd(BDi�∂(Wg,1);Q)

are isomorphisms for d ≤ min{g− 3 + c, 2n− 5}, where c = 0 for n
even and c = 1 for n odd.

Deduced from work of Berglund-Madsen (2012) on homological
stability of ”variations” {BD̃i�∂(Wg,1)}g and {BAut∂(Wg,1)}g of
{BDi�∂(Wg,1)}g.
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Goal

Use Ek-algebras techniques to improve the ranges for n ≥ 3.

• By Krannich expect a range of the form d ≤ g− 3 + c (with Q
coe�cients).

• Improvements on the stability range lead to the computation of
new homology groups (and hence of characteristic classes).

• The improvements one can get from Ek-algebras techniques are of
exploratory nature (better slopes, secondary phenomena etc).
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The results



Statements (work in progress)

Theorem (in progress): Let n ≥ 3, then the stabilization maps

Hd(BDi�∂(Wg−1,1);k) −→ Hd(BDi�∂(Wg,1);k)

are isomorphisms for

(i) k = Z and d ≤ 2g−6
3 if n is even.

(ii) k = Z and d ≤ 2g−4
3 if n = 3, 7.

(iii) k = Z[ 1
2 ] and d ≤ 2g−7

3 if n is odd, n 6= 3, 7.
(iv) k = Q and d ≤ 2n−4

2n−3 (g− 2− 2
2n−4 ) if n is odd. (This approaches

Krannich’s line when n −→∞)
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The proof



Getting an E2n-algebra

First step: view
R :=

⊔
g≥1

BDi�∂(Wg,1)

as an (N-graded) E2n-algebra, so that stabilization maps arise from
this E2n-structure.

Point set model

R(g) := BDi�∂(Wg,1) = space of submanifolds W ⊂ I2n × R∞

di�eomorphic to Wg,1 and which look standard near the boundary
∂W = ∂I2n × {0}

W ∈ R(3)
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The E2n-algebra structure on R

1

2

3

C2(3)× R(3)× R(2)× R(1)

∈
∈ R(6)

Technical remark: In the actual proof one considers a more
convenient E2n−1-algebra related to the above.
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Cellular Ek-algebras

Notion of ”cell attachment” in the category of Ek-algebras: given an
Ek-algebra S (in N-graded spaces) and a map ϕ : ∂Dd −→ S(g) one
can attach a bidegree (g,d) Ek-cell Ek(Dg,d) to get a new Ek-algebra
S ∪Ekϕ Ek(Dg,d).

Cellular Ek-algebras= those constructed by a sequence of cell
attachments starting from ∅.

Cellular approximation theorem: If R(0) = ∅ then there is a cellular
Ek-algebra A with a weak equivalence A '−→ R.

Using the work of F.Cohen, the homology of cellular Ek-algebras is
accessible.
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Finding a (minimal) cellular approximation to R (I)

This is the second step in the proof and has two parts:

(i) Proving an a priori vanishing result: Show that there is a
cellular approximation having no (g,d)-cells with d < g− 1.
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(ii) Understanding a (minimal) cell structure for small values of
(g,d).

”Adding cells of slope d/g ≥ λ does not destroy homological
stability of slope ≤ λ”
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Finding a cellular approximation to R (II)

Vanishing result:

Comes down to the high-connectivity of certain ”splitting
complexes”.

Usually the technically most challenging part.

Cell structure for small degrees and genus:

Strategy is to access it by computing Hd(BDi�∂(Wg,1)) for small (g,d).
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Cell computation integrally

Using the analysis of mapping class groups by Kreck (1979) we can
access the cellular approximation up to degree 1.

n even:
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Cell computation rationally for n odd

Using result by Krannich one shows that only 3 cells are needed on
the critical line for d ≤ 2n− 5, so smallest slope of additional cells
is ≥ 2n−4

2n−3 .

g
2n-3

2n-4
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Then one checks that the algebra consisting of just those 3 cells has
rational stability of slope 1.
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