## $E_k$ -algebras and diffeomorphism groups

Ismael Sierra

University of Cambridge

W = manifold with boundary

 $\text{Diff}_{\partial}(W) = \text{diffeomorphisms of } W \text{ fixing (pointwise) its boundary}$ 

 $BDiff_{\partial}(W) = classifying space of Diff_{\partial}(W)$ 

This classifies smooth fibre bundles with fibre W which are trivialized over  $\partial W$ 

 $H^*(BDiff_{\partial}(W)) =$  characteristic classes of such bundles

Convenient to discuss  $H_*(BDiff_{\partial}(W))$  instead.

#### Focus our attention on a particular class of manifolds

$$W_{g,1}^{2n} := D^{2n} \# (S^n \times S^n)^{\#g}$$

 $W_{g,1}$  = boundary connected sum of g copies of  $W_{1,1}$ 



### Homological stability of diffeomorphism groups

Have inclusions  $W_{g-1,1} \subset W_{g,1}$ 



which give stabilization maps

 $\operatorname{Diff}_{\partial}(W_{g-1,1}) \longrightarrow \operatorname{Diff}_{\partial}(W_{g,1})$ 

Questions:

- Are these homology isomorphisms in a range of degrees?
- What is the stable homology? i.e. what is  $\operatorname{colim}_g H_d(BDiff_\partial(W_{g,1}))$ ?

Let  $n \ge 3$ 

 $\bullet$  Homological stability for the family  $\{\text{Diff}_{\partial}(W_{g,1})\}_{g\geq 1}$ : The stabilization maps

 $H_d(BDiff_\partial(W_{g-1,1})) \longrightarrow H_d(BDiff_\partial(W_{g,1}))$ 

are isomorphisms for  $d \leq \frac{g-4}{2}$  (Galatius–Randal-Williams 2012)

• The value of

 $\operatorname{colim}_{g} H_{d}(BDiff_{\partial}(W_{g,1});\mathbb{Q})$ 

is known (Galatius-Randal-Williams 2014).

For n = 1 (surfaces)

$$\operatorname{Diff}_{\partial}(W_{g,1}) \xrightarrow{\simeq} \pi_{o}(\operatorname{Diff}_{\partial}(W_{g,1})) =: \Gamma_{g,1}$$

so one can study mapping class groups instead.

- Homological stability (of slope 1/3) for  ${\Gamma_{g,1}}_{g\geq 1}$  (Harer 1985).
- The stable (co)homology is known:

$$\lim_{g} H^*(B\Gamma_{g,1};\mathbb{Q}) = \mathbb{Q}[\kappa_1,\kappa_2,\kappa_3,\cdots]$$

(Madsen-Weiss 2007)

• Improvements on the stability ranges for the n = 1 case (Ivanov, Boldsen, Randal-Williams): Best slope found was 2/3.

• Using  $E_k$ -algebras the following results were shown:

(i) The stabilization maps

$$H_d(B\Gamma_{g-1,1}) \longrightarrow H_d(B\Gamma_{g,1})$$

are surjective for  $d \leq \frac{2g-2}{3}$  and isomorphisms for  $d \leq \frac{2g-4}{3}$ 

(ii) Some additional information: "Secondary stability" (which implies that 2/3 slope is optimal).

(Galatius-Kupers-Randal Williams 2019)

**Theorem** (Krannich 2019): Let  $n \ge 3$ , then the stabilization maps

 $H_d(\operatorname{BDiff}_\partial(W_{g-1,1}); \mathbb{Q}) \longrightarrow H_d(\operatorname{BDiff}_\partial(W_{g,1}); \mathbb{Q})$ 

are isomorphisms for  $d \le \min\{g - 3 + c, 2n - 5\}$ , where c = 0 for n even and c = 1 for n odd.

Deduced from work of Berglund-Madsen (2012) on homological stability of "variations"  $\{B\widetilde{\text{Diff}}_{\partial}(W_{g,1})\}_g$  and  $\{B\operatorname{Aut}_{\partial}(W_{g,1})\}_g$  of  $\{B\operatorname{Diff}_{\partial}(W_{g,1})\}_g$ .

Use  $E_k$ -algebras techniques to improve the ranges for  $n \ge 3$ .

- By Krannich expect a range of the form  $d \leq g 3 + c$  (with  $\mathbb{Q}$  coefficients).
- Improvements on the stability range lead to the computation of new homology groups (and hence of characteristic classes).
- The improvements one can get from *E*<sub>k</sub>-algebras techniques are of exploratory nature (better slopes, secondary phenomena etc).

## The results

#### **Theorem** (in progress): Let $n \ge 3$ , then the stabilization maps

$$H_d(BDiff_\partial(W_{g-1,1}); \Bbbk) \longrightarrow H_d(BDiff_\partial(W_{g,1}); \Bbbk)$$

are isomorphisms for

(i) 
$$k = \mathbb{Z}$$
 and  $d \le \frac{2g-6}{3}$  if *n* is even.  
(ii)  $k = \mathbb{Z}$  and  $d \le \frac{2g-4}{3}$  if  $n = 3, 7$ .  
(iii)  $k = \mathbb{Z}[\frac{1}{2}]$  and  $d \le \frac{2g-7}{3}$  if *n* is odd,  $n \ne 3, 7$ .  
(iv)  $k = \mathbb{Q}$  and  $d \le \frac{2n-4}{2n-3}(g-2-\frac{2}{2n-4})$  if *n* is odd. (This approaches Krannich's line when  $n \longrightarrow \infty$ )

# The proof

First step: view

$$\mathsf{R} := \bigsqcup_{g \ge 1} \mathsf{BDiff}_{\partial}(W_{g,1})$$

F

as an ( $\mathbb{N}$ -graded)  $E_{2n}$ -algebra, so that stabilization maps arise from this  $E_{2n}$ -structure.

Point set model

 $R(g) := BDiff_{\partial}(W_{g,1}) = space of submanifolds <math>W \subset I^{2n} \times \mathbb{R}^{\infty}$ diffeomorphic to  $W_{g,1}$  and which look standard near the boundary  $\partial W = \partial I^{2n} \times \{0\}$ 

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \hspace{0.5cm} W \in R(3) \end{array}$$

### The $E_{2n}$ -algebra structure on R



Technical remark: In the actual proof one considers a more convenient  $E_{2n-1}$ -algebra related to the above.

Notion of "cell attachment" in the category of  $E_k$ -algebras: given an  $E_k$ -algebra S (in  $\mathbb{N}$ -graded spaces) and a map  $\varphi : \partial D^d \longrightarrow S(g)$  one can attach a bidegree  $(g, d) E_k$ -cell  $E_k(D^{g,d})$  to get a new  $E_k$ -algebra  $S \cup_{\varphi}^{E_k} E_k(D^{g,d})$ .

Cellular  $E_k$ -algebras = those constructed by a sequence of cell attachments starting from  $\emptyset$ .

**Cellular approximation theorem**: If  $R(o) = \emptyset$  then there is a cellular  $E_k$ -algebra A with a weak equivalence  $A \xrightarrow{\simeq} R$ .

Using the work of F.Cohen, the homology of cellular  $E_k$ -algebras is accessible.

### Finding a (minimal) cellular approximation to R (I)

This is the second step in the proof and has two parts:

(i) Proving an a priori vanishing result: Show that there is a cellular approximation having no (g, d)-cells with d < g - 1.



 (ii) Understanding a (minimal) cell structure for small values of (g, d).

"Adding cells of slope  $d/g \ge \lambda$  does not destroy homological stability of slope  $\le \lambda$ "

Vanishing result:

Comes down to the high-connectivity of certain "splitting complexes".

Usually the technically most challenging part.

Cell structure for small degrees and genus:

Strategy is to access it by computing  $H_d(BDiff_\partial(W_{g,1}))$  for small (g, d).

### Cell computation integrally

Using the analysis of mapping class groups by Kreck (1979) we can access the cellular approximation up to degree 1.

n even:



n odd:



### Cell computation rationally for *n* odd

Using result by Krannich one shows that only 3 cells are needed on the critical line for  $d \le 2n - 5$ , so smallest slope of additional cells is  $\ge \frac{2n-4}{2n-3}$ .



Then one checks that the algebra consisting of just those 3 cells has rational stability of slope 1.