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Introduction: what is homological
stability?
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G = (discrete) group.
BG = classifying space of principal G-bundles.

H*(BG) = characteristic classes of such bundles.

Goal: to compute H*(BG), or compute H..(BG).

Algebraic interpretation: H,(BG) = Tor*Z[G](Z, Z) and
H*(BG) = Exty (2, Z).

Problem: this is very hard!
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Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

Go — Gy — Gy = - -

Thus, get a family of classifying spaces

BGy, — BG, —+ BG, — --- .
Then, we can ask two questions.

(i) Do we have homological stability? i.e. are the maps
Hy4(BGn) — Hy(BGn1) isomorphisms for d << n?

(ii) Can we compute the stable homology? i.e. can we compute
colimp, Hy(BGp)?

If answer to both is yes then we get partial computations!... and
improving stability range becomes relevant!
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theorem.



Stable homology: examples

Fact: In many examples of interest, we can access the stable
homology Hy(BG) := colim, Hg(BGy,) using group completion
theorem.

Examples:

(i) Gn = GLp(Fq): stable homology completely described by Quillen

'72.

(i) Gn = GL,(R): stable homology related to K(R) = algebraic
K-theory of R.
Example: R = number field and Q coefficients then known by
Borel '74.

(i) Gn = MCG(X,,): stable homology known!
H*(BGwo, Q) = Q[kn, k2, - - - ]. (Madsen-Weiss '07)

(iv) Gn = Span(Z): H*(BSpoo(Z), Q) = Q[X2, Xs, X10, - - - | by Borel '74.
Integral computations possible by 9 authors (Calmés-Dotto-
Harpaz-Hebestreit-Land-Moi-Nardin-Nikolaus-Steimle).
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Question: how does one prove homological stability? for which
families?
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Question: how does one prove homological stability? for which
families?

“Classical” argument (Quillen, Randal-Williams-Wahl,...) gives a
framework for examples.

Set-up:

Y

. (C,®,0) = (braided) monoidal category.

2. X € C = stabilizing object.

3. A € C = choice of object, usually take A = o.
4. G = Autc(A @ X®M).

5. G — Gp.4 given by — @ idy.
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The Classical argument Il: examples

(i) F=field, take C = Vect’;'d, @ = direct sum, X = F, A= 0. Then

Gn = GLn(F).
(i) € — objects= >n
morphisms= diffeomorphisms rel boundary/isotopy ’

@ = boundary connected sum,

o =) = =

A=@,X =Y,,. Then G, = MCG(S,,).
(ili) C = category of skew-symmetric bilinear forms over Z, ® =

orthogonal direct sum,A=0, X = ( 01

;) hyperbolic form.
Then G, = Spon(Z).
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The Classical argument lll: the method

There are canonical destabilization complexes W, (A, X) associated
to the above data, dimension =n — 1.

Informally: p—simplices «<— ways of destabilizing X*P™' from
A®Xon,

Theorem (Quillen, Randal-Williams-Wahl): If the connectivity of
Whn(A, X) grows with n then the family {G,}, has homological
stability.

Precise: If W, (A, X) is £ connected, ¢ € Z, € Z~, then

H4(BGp) — Hy(BGni4) i |s anisoifd < J=EH..
Limitation of method: we can never get something better than

n—const
- -
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(i) Gn = GLn(R): get result “><, ¢ = constant depending on ring.
(Quillen, Maazen, Van der Kallen, ...).
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bound < %
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d < 2, constant depends on ring.
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The Classical method: applications

(i) Gn = GLn(R): get result “><, ¢ = constant depending on ring.
(Quillen, Maazen, Van der Kallen, ...).

(ii) Gn = MCG(%,,) (Harer, lvanov, Boldsen, Randal-Williams,
Galatius-Kupers-Randal-Williams, Harr-Vistrup-Wahl). Best
bound < %

(iii) G, = Span(R) (Charney, Miraii-Van der Kallen,...) get range
d < 2, constant depends on ring.

~ 21

Surprise: bound for MCG is 2n/3 >> n/2... so hard to get using
“classical method” alone...

Result of Harr-Vistrup-Wahl manages to do so!



Results
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Let R be a ring with finite unitary stable rank (usr). Let c = 0 if Ris a

PID and c = 2usr(R) + 2 otherwise. Then

Ha(BSp2g(R)) — Ha(BSpa(g-+1)(R))
is an iso ford < 29*3;2.
This improves previously 1/2 slope bound to 2/3.

As we will see, 2/3 slope is related to MCG 2/3 slope...
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Define the “odd” symplectic groups Spyg+(R) := Stabsy, ., ry(€1),

where standard basis is e;, fi, .. ., eg, fg.
Have Spo(R) C Spa(R) C Spa2(R) € Sps(R) C ---.
Theorem (S., Whal)

Let R be a ring with finite unitary stable rank (usr). Let c =0 ifRis a
PID and c = 2usr(R) + 2 otherwise. Then

Ha(BSPa(R)) = Ha(BSPn:1(R)

is aniso ford < "==3.

New slope = 1/3.



The proof




The geometric ideal

Key idea (Harr-Vistrup-Wahl) ¥, , , can be obtained by attaching

two handles to X 4.
D)

Thus, we can define new family by attaching one handle at a time:
Z0717 z0727 z1,’]7 z1,27 z2,’]7 Z2,27 9000

Old stability problem has twice the speed = Suffices stability of
slope 1/3 for new family!
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The geometric ideal

Key idea (Harr-Vistrup-Wahl) ¥, , , can be obtained by attaching

two handles to X 4.
D)

Thus, we can define new family by attaching one handle at a time:
Z0717 z0727 z1,’]7 z1,27 z2,’]7 Z2,27 9000

Old stability problem has twice the speed = Suffices stability of
slope 1/3 for new family!

Issues:

1. One has to be careful attaching handles!
2. How to create a nice categorical set-up?

@ .



The geometric idea Il

Take C = category of bidecorated surfaces.

Objects = (X, Io, I1).

1"



The geometric idea Il

Take C = category of bidecorated surfaces.

Objects = (X, Io, I1).

Morphisms = isotopy classes of diffeomorphisms preserving the
intervals.

1"



The geometric idea Il

Take C = category of bidecorated surfaces.

Objects = (X, Io, I1).

Morphisms = isotopy classes of diffeomorphisms preserving the
intervals.

Monoidal structure: glue along “half of the intervals”, and use the
remaining halves to define the new intervals in the glued surface.

1"



The geometric idea Il

Take C = category of bidecorated surfaces.

Objects = (X, Io, I1).

Morphisms = isotopy classes of diffeomorphisms preserving the
intervals.

Monoidal structure: glue along “half of the intervals”, and use the
remaining halves to define the new intervals in the glued surface.

A=0o.

X = disc.

1"



The geometric idea Il

Take C = category of bidecorated surfaces.

Objects = (X, Io, I1).

Morphisms = isotopy classes of diffeomorphisms preserving the
intervals.

Monoidal structure: glue along “half of the intervals”, and use the
remaining halves to define the new intervals in the glued surface.

A=0.
X = disc.

This solves both problems!

1"



The geometric idea Il

Wn(2,X) = complex of disordered arcs.
Vertices: non-separating arcs from b, to b, (up to isotopy).

p— simplex: collection {ao,...,a,} of non-separating pairwise
disjoint arcs such that orders at b,, b, agree.
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The geometric idea Il

Wn(2,X) = complex of disordered arcs.
Vertices: non-separating arcs from b, to b, (up to isotopy).

p— simplex: collection {ao,...,a,} of non-separating pairwise
disjoint arcs such that orders at b,, b, agree.

Theorem (Harr-Vistrup-Wahl): W, is ™ 3>-connected.

This implies stability result of slope 2/3 for MCG(Xg ).
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Key insight: Action on homology (with R coefficients) gives a map
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MCG(X42) — Spag+1(R). Then study new family.
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Formed spaces with boundary |

Key insight: Action on homology (with R coefficients) gives a map
MCG(Xg,1) — Spag(R). Want to find Sp,g.+(R) with maps
MCG(X42) — Spag+1(R). Then study new family.

Better wish: find algebraic analogue of bidecorated surfaces and a
functor from bidecorated surfaces to it.

Solution: Category F, of formed spaces with boundary.
e Objects = (M, \,9), M = f.g. free R-module, A = skew-symmetric
bilinear form, 9 : M — R.
e Morphisms= module maps preserving \, .
e Monoidal structure #:

M ol o,
(M, Mq, 1) F#(My, Ay, 32) = [ My & My, oo A\ ,01+ 0, |.
—Uytn 2
e X =(R,0,id).

13



Formed spaces with boundary I

Geometric interpretation: Functor from bidecorated surfaces to Fy
defined by (X, lo, I1) — (H1(X Ui, H), A, @) where
Q1 Hy(Z Upn, H) 22 Hy(X, Io U ly) — Ho(lo U 1) = R is boundary map.

1 ’
ﬁ! Q‘

Figure 1: Two bidecorated surfaces (¥, Io, 1) and their associated surface
St=YUH
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Figure 1: Two bidecorated surfaces (¥, Io, 1) and their associated surface
St=YUH

Note: bidecorated disc — X = (R, 0, id).
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Formed spaces with boundary I

Geometric interpretation: Functor from bidecorated surfaces to Fy
defined by (X, lo, I1) — (H1(X Ui, H), A, @) where
Q1 Hy(Z Upn, H) 22 Hy(X, Io U ly) — Ho(lo U 1) = R is boundary map.

1 ’
ﬁ! 06

Figure 1: Two bidecorated surfaces (¥, Io, 1) and their associated surface
St=YUH

Note: bidecorated disc — X = (R, 0, id).
Functor is monoidal! This gives geometric meaning to #.

Algebraic meaning uses (M, & M,)" =~ M) & M) and
N (My @ My)Y =2 A2MY @ MY @ MY @ A*MY.
14
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Even and odd symplectic groups

Now, natural to consider G, = Aut(X#").

Fact: n = 2g + 1 one gets G, = Spyg(R).

When n = 2g one gets G, = Stabsp,, (r)(€1) = Sp2g—1(R).
Thus, G, = Spn_4(R)... even and odd are exchanged for us!

Fun fact: There is a braiding in full subcategory generated by X so
get B, — Aut(X#") = Sp,_4(R)... this is (reduced) Bureau
representation!

15
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Destabilization complex and arcs |

Geometrically W, = disordered arc complex.
Question: what happens algebraically?

Arc:= a € M such that 9a = 1.

Geometric meaning: geometric arc gives algebraic arc!

Non-separating: a € M arc is non-separating if {\(a, —), 9}
unimodular in MY.

Meaning: condition says there is b € M such that b = 1 and
A(a, b) = 1: “b connects the two sides of a”.

Jointly non-separating: {\(ao,—), ..., \(ap, —),d} unimodular in M.
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Connectivity of disordered arc complex

Theorem (S~Wahl) D(M, X, 9) is "<-connected, where c = 5 if Ris a
PID and ¢ = 2usr(R) + 6 in general.

Using the above one proves stability theorem!



Finishing the proof

Proof based on a “bad simplex argument”.
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Finishing the proof

Proof based on a “bad simplex argument”.

Start with complex of all non-separating arcs, and try to deform
maps (this is analogue to geometric proof?!).

Key: Complex of non-separating arcs related to unimodular vectors
complexes... that has connectivity of slope 1 in fact!

Key algebraic ingredient: understanding how X-genus decreases
when we cut algebraic arcs... problem is that the X-genus (algebraic
version of “number of handles”) generally drops by 2 and not by 1,
that causes slope 1/3 and not 1/2.
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Further possible works and applications

1. In the geometric arc complex, slope 1/3 stability is optimal.
What about in the algebraic arc complex? (nothing known...)

2. Use this to get a classical proof 2/3-slope stability for
diffeomorphism groups of some high-dimensional manifolds.

3. What about quadratic symplectic groups? issue is the
non-separating arc complex... all other steps work analogously
and stability of slope > 1/4 has new geometric implications!

4. Can one use similar methods to improve the slope 1/4
connectivity in the paper “Uniform twisted homological
stability” by Miller-Patzt-Petersen-Randal-Williams? Maybe go
to slope 1/3? (Ideal conjecture says it is 1/2 and connects to
number theory)

20
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