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Introduction: what is homological
stability?



Homological Stability I: motivation

G = (discrete) group.

BG = classifying space of principal G-bundles.

H∗(BG) = characteristic classes of such bundles.

Goal: to compute H∗(BG), or compute H∗(BG).

Algebraic interpretation: H∗(BG) = TorZ[G]∗ (Z,Z) and
H∗(BG) = Ext∗

Z[G](Z,Z).

Problem: this is very hard!
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Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

G0 ↪→ G1 ↪→ G2 ↪→ · · · .

Thus, get a family of classifying spaces

BG0 → BG1 → BG2 → · · · .

Then, we can ask two questions.

(i) Do we have homological stability? i.e. are the maps
Hd(BGn)→ Hd(BGn+1) isomorphisms for d << n?

(ii) Can we compute the stable homology? i.e. can we compute
colimn Hd(BGn)?

If answer to both is yes then we get partial computations!... and
improving stability range becomes relevant!

2



Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

G0 ↪→ G1 ↪→ G2 ↪→ · · · .

Thus, get a family of classifying spaces

BG0 → BG1 → BG2 → · · · .

Then, we can ask two questions.

(i) Do we have homological stability? i.e. are the maps
Hd(BGn)→ Hd(BGn+1) isomorphisms for d << n?

(ii) Can we compute the stable homology? i.e. can we compute
colimn Hd(BGn)?

If answer to both is yes then we get partial computations!... and
improving stability range becomes relevant!

2



Homological Stability II: a (partial) solution

Key idea (Quillen): Many groups of interest arise in families:

G0 ↪→ G1 ↪→ G2 ↪→ · · · .

Thus, get a family of classifying spaces

BG0 → BG1 → BG2 → · · · .

Then, we can ask two questions.

(i) Do we have homological stability? i.e. are the maps
Hd(BGn)→ Hd(BGn+1) isomorphisms for d << n?

(ii) Can we compute the stable homology? i.e. can we compute
colimn Hd(BGn)?

If answer to both is yes then we get partial computations!... and
improving stability range becomes relevant!

2



Stable homology: examples

Fact: In many examples of interest, we can access the stable
homology Hd(BG∞) := colimn Hd(BGn) using group completion
theorem.

Examples:

(i) Gn = GLn(Fq): stable homology completely described by Quillen
’72.

(ii) Gn = GLn(R): stable homology related to K(R) = algebraic
K-theory of R.
Example: R = number field and Q coefficients then known by
Borel ’74.

(iii) Gn = MCG(Σn,1): stable homology known!
H∗(BG∞,Q) = Q[κ1, κ2, · · · ]. (Madsen–Weiss ’07)

(iv) Gn = Sp2n(Z): H∗(BSp∞(Z),Q) = Q[x2, x6, x10, . . . ] by Borel ’74.
Integral computations possible by 9 authors (Calmès–Dotto–
Harpaz–Hebestreit–Land–Moi–Nardin–Nikolaus–Steimle).
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The“Classical” argument I: set-up

Question: how does one prove homological stability? for which
families?

“Classical” argument (Quillen, Randal-Williams–Wahl,...) gives a
framework for examples.

Set-up:

1. (C,⊕,0) = (braided) monoidal category.
2. X ∈ C = stabilizing object.
3. A ∈ C = choice of object, usually take A = 0.
4. Gn = AutC(A⊕ X⊕n).
5. Gn ↪→ Gn+1 given by −⊕ idX .
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The Classical argument II: examples

(i) F = field, take C = Vectf .d
F , ⊕ = direct sum, X = F, A = 0. Then

Gn = GLn(F).

(ii) C =

{
objects= Σn,1

morphisms= diffeomorphisms rel boundary/isotopy
,

⊕ = boundary connected sum,

A = ∅, X = Σ1,1. Then Gn = MCG(Σn,1).
(iii) C = category of skew-symmetric bilinear forms over Z, ⊕ =

orthogonal direct sum, A = 0, X =

(
0 1
−1 0

)
hyperbolic form.

Then Gn = Sp2n(Z).
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The Classical argument III: the method

There are canonical destabilization complexes Wn(A, X) associated
to the above data, dimension = n− 1.

Informally: p−simplices←→ ways of destabilizing X⊕p+1 from
A⊕ X⊕n.

Theorem (Quillen, Randal-Williams–Wahl): If the connectivity of
Wn(A, X) grows with n then the family {Gn}n has homological
stability.

Precise: If Wn(A, X) is n−c
k connected, c ∈ Z, ∈ Z>0 then

Hd(BGn)→ Hd(BGn+1) is an iso if d ≤ n−c+2
max{2,k} .

Limitation of method: we can never get something better than
n−const

2 .
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The Classical method: applications

(i) Gn = GLn(R): get result n−c
2 , c = constant depending on ring.

(Quillen, Maazen, Van der Kallen, ...).
(ii) Gn = MCG(Σn,1) (Harer, Ivanov, Boldsen, Randal-Williams,

Galatius–Kupers–Randal-Williams, Harr-Vistrup–Wahl). Best
bound ≲ 2n

3 .
(iii) Gn = Sp2n(R) (Charney, Miraii–Van der Kallen,...) get range

d ≲ n
2 , constant depends on ring.

Surprise: bound for MCG is 2n/3 >> n/2... so hard to get using
“classical method” alone...

Result of Harr–Vistrup–Wahl manages to do so!
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Results



Result I

Theorem (S., Whal)
Let R be a ring with finite unitary stable rank (usr). Let c = 0 if R is a
PID and c = 2usr(R) + 2 otherwise. Then

Hd(BSp2g(R))→ Hd(BSp2(g+1)(R))

is an iso for d ≤ 2g−c−2
3 .

This improves previously 1/2 slope bound to 2/3.

As we will see, 2/3 slope is related to MCG 2/3 slope...
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Result II

Define the “odd” symplectic groups Sp2g+1(R) := StabSp2g+2(R)(e1),
where standard basis is e1, f1, . . . , eg, fg.

Have Sp0(R) ⊂ Sp1(R) ⊂ Sp2(R) ⊂ Sp3(R) ⊂ · · · .

Theorem (S., Whal)
Let R be a ring with finite unitary stable rank (usr). Let c = 0 if R is a
PID and c = 2usr(R) + 2 otherwise. Then

Hd(BSpn(R))→ Hd(BSpn+1(R))

is an iso for d ≤ n−c−3
3 .

New slope = 1/3.
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The proof



The geometric idea I

Key idea (Harr–Vistrup–Wahl) Σn+1,1 can be obtained by attaching
two handles to Σn,1.

Thus, we can define new family by attaching one handle at a time:
Σ0,1,Σ0,2,Σ1,1,Σ1,2,Σ2,1,Σ2,2, . . . .

Old stability problem has twice the speed⇒ Suffices stability of
slope 1/3 for new family!

Issues:

1. One has to be careful attaching handles!
2. How to create a nice categorical set-up?
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The geometric idea II

Take C = category of bidecorated surfaces.

Objects = (Σ, I0, I1).

I0
I1

Morphisms = isotopy classes of diffeomorphisms preserving the
intervals.

Monoidal structure: glue along “half of the intervals”, and use the
remaining halves to define the new intervals in the glued surface.

A = ∅.

X = disc.

This solves both problems!
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The geometric idea III

Wn(∅, X) = complex of disordered arcs.

Vertices: non-separating arcs from b0 to b1 (up to isotopy).

p− simplex: collection {a0, . . . ,ap} of non-separating pairwise
disjoint arcs such that orders at b0,b1 agree.

Theorem (Harr–Vistrup–Wahl): Wn is n−5
3 -connected.

This implies stability result of slope 2/3 for MCG(Σg,1).
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Formed spaces with boundary I

Key insight: Action on homology (with R coefficients) gives a map
MCG(Σg,1)→ Sp2g(R). Want to find Sp2g+1(R) with maps
MCG(Σg,2)→ Sp2g+1(R). Then study new family.

Better wish: find algebraic analogue of bidecorated surfaces and a
functor from bidecorated surfaces to it.

Solution: Category F∂ of formed spaces with boundary.

• Objects = (M, λ, ∂), M = f.g. free R-module, λ = skew-symmetric
bilinear form, ∂ : M→ R.

• Morphisms= module maps preserving λ, ∂.
• Monoidal structure #:

(M1, λ1, ∂1)#(M2, λ2, ∂2) =

(
M1 ⊕M2,

(
λ1 ∂T

1 ∂2

−∂T
2∂1 λ2

)
, ∂1 + ∂2

)
.

• X = (R,0, id).
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Formed spaces with boundary II

Geometric interpretation: Functor from bidecorated surfaces to F∂
defined by (Σ, I0, I1) 7→ (H1(Σ ∪I0⊔I1 H), λ, ∂) where
∂ : H1(Σ ∪I0⊔I1 H) ∼= H1(Σ, I0 ⊔ I1)→ H̃0(I0 ⊔ I1) ∼= R is boundary map.

Figure 1: Two bidecorated surfaces (Σ, I0, I1) and their associated surface
Σ+ = Σ ∪ H

Note: bidecorated disc 7→ X = (R,0, id).

Functor is monoidal! This gives geometric meaning to #.

Algebraic meaning uses (M1 ⊕M2)
∨ ∼= M∨

1 ⊕M∨
2 and

Λ2(M1 ⊕M2)
∨ ∼= Λ2M∨

1 ⊕M∨
1 ⊗M∨

2 ⊕ Λ2M∨
2 .
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Even and odd symplectic groups

Now, natural to consider Gn = Aut(X#n).

Fact: n = 2g + 1 one gets Gn ∼= Sp2g(R).

When n = 2g one gets Gn ∼= StabSp2g(R)(e1) = Sp2g−1(R).

Thus, Gn = Spn−1(R)... even and odd are exchanged for us!

Fun fact: There is a braiding in full subcategory generated by X so
get Bn → Aut(X#n) = Spn−1(R)... this is (reduced) Bureau
representation!

15
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representation!
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Destabilization complex and arcs I

Geometrically Wn = disordered arc complex.

Question: what happens algebraically?

Arc:= a ∈ M such that ∂a = 1.

Geometric meaning: geometric arc gives algebraic arc!

Non-separating: a ∈ M arc is non-separating if {λ(a,−), ∂}
unimodular in M∨.

Meaning: condition says there is b ∈ M such that ∂b = 1 and
λ(a,b) = 1: “b connects the two sides of a”.

Jointly non-separating: {λ(a0,−), . . . , λ(ap,−), ∂} unimodular in M∨.
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Destabilization complex and arcs II

What about ordering condition?

We say that a0, . . . ,ap are disordered if we can pick an ordering of
them such that λ(ai,aj) = 1 for i < j.

Figure 2: Two disordered arcs crossing once inside the handle

Thus, get algebraic disordered arc complex D(M, λ, ∂).

Vertices= non-separating arcs.

p-simplex: jointly non-separating and disordered.

Key fact: Wn and D(X#n) agree (on a skeleton).

Thus, to finish we need to understand connectivity.
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Connectivity of disordered arc complex

Theorem (S.–Wahl) D(M, λ, ∂) is n−c
3 -connected, where c = 5 if R is a

PID and c = 2usr(R) + 6 in general.

Using the above one proves stability theorem!
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Finishing the proof

Proof based on a “bad simplex argument”.

Start with complex of all non-separating arcs, and try to deform
maps (this is analogue to geometric proof!).

Key: Complex of non-separating arcs related to unimodular vectors
complexes... that has connectivity of slope 1 in fact!

Key algebraic ingredient: understanding how X-genus decreases
when we cut algebraic arcs... problem is that the X-genus (algebraic
version of “number of handles”) generally drops by 2 and not by 1,
that causes slope 1/3 and not 1/2.
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Further possible works and applications

1. In the geometric arc complex, slope 1/3 stability is optimal.
What about in the algebraic arc complex? (nothing known...)

2. Use this to get a classical proof 2/3-slope stability for
diffeomorphism groups of some high-dimensional manifolds.

3. What about quadratic symplectic groups? issue is the
non-separating arc complex... all other steps work analogously
and stability of slope > 1/4 has new geometric implications!

4. Can one use similar methods to improve the slope 1/4
connectivity in the paper “Uniform twisted homological
stability” by Miller–Patzt–Petersen–Randal-Williams? Maybe go
to slope 1/3? (Ideal conjecture says it is 1/2 and connects to
number theory)
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